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Abstract

In this paper, a shape sampling approach is proposed for CAD products that can be used to suggest innovative product shapes
to designers and consumers. These shapes are intended to inspire designers and can be employed during the design process. For a
given set of geometric parameters defining the product shapes, parameter relationships (i.e., geometric constraints), and parameter
ranges, a particle tracing (PT) algorithm is proposed to find product shapes that satisfy the defined geometric constraints in the
shape space. Particles are placed at points in the shape space by minimizing the Audze-Eglais potential energy of the particle
positions using a permutation genetic algorithm. They then move until one of the predetermined stopping criteria is met. Particle
movement is achieved using a cost function that favors movement towards feasible shapes. By iteratively running the PT algorithm,
feasible shapes are obtained. Representatives of these shapes are identified using a k-medoids clustering approach, and such
representatives can be used by designers or shown to consumers to customize the product according to their preferences. In this
paper, eight CAD models (e.g., car hood, yacht hull, wheel rim) are utilized to validate the performance of the proposed sampling
technique. We also compare our technique with related methods.
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1. Introduction

In today’s market, products should attract customers not
only by their performance or functionality, but also their
external appearance. A product’s external shape space con-
sists of many shape variations. However, designers may not
always anticipate all possible options, which may impede
their ability to produce the most desirable product designs
for consumers. We believe that a tool that performs the
sampling of a product’s shape space can help both design-
ers and consumers in identifying the most appealing prod-
uct shapes. If these shape variations are obtained automat-
ically by sampling in the shape space, designers can utilize
them to develop more visually appealing designs.

The design stage in engineering starts with determining
the design specifications. There may be no CAD models or
few such models available in the company model database.
The designer first creates an initial CAD model if none are
available and forms its design space using design specifica-
tions. The model is then modified to obtain as many vari-
ations as possible, which are validated through computer
simulations or based on customer preferences. We think
that it is preferable for designers to explore as many de-
sign variations of a CAD model as possible in advance be-

fore or during the design stage. Figure 1 (a) illustrates a
design specification for a car hood, with its boundary in
black. A CAD model is generated, as shown in Fig. 1 (b);
the model is then modified to obtain its variations (see Fig.
1 (c)). The objective of this study is to perform sampling
of a product’s external shape within its shape (or design)
space. To accomplish this, the product is first represented
by geometric parameters; geometric constraints (i.e., rela-
tions between geometric parameters) are then determined.
Finally, the geometric parameter ranges are identified. The
shape space for the CAD model is formed using these geo-
metric parameters and their ranges.

In this research, sampling quality is measured using two
properties, namely space-filling and the computational
time of the algorithm. The samples should have a good
space-filling property so that they spread evenly in the
constrained shape space to the greatest possible extent.
Achieving such sampling in a shorter time is an important
benefit in product design as well. The particle tracing (PT)
algorithm, which was motivated by the motorcycle graph
algorithm developed by Eppstein et al. [1], finds the shape
variations of a given CAD product by inserting particles
and moving them in the shape space. Specific tracing rules
are introduced and applied for the particle movements. By



Fig. 1. After determining the design specifications (a) of a car hood

(i.e., its boundary), its CAD model is generated (b). Distinct designs

can be obtained by modifying the CAD model (c).

placing many particles in the n-dimensional shape space
while minimizing the Audze-Eglais potential energy [2,3],
different shape variations of the product can be generated.
Such a particle placement strategy enables the even inser-
tion of the particles into the shape space. The obtained
product shapes are clustered using a k-medoids approach
to identify a representative product shape of each cluster,
which then can be shown to designers or consumers.

In summary, we present two main contributions in this
paper, as follows:

– A sampling technique to obtain distinct CAD models
that can be used in the design stage; and

– A particle tracing algorithm working jointly with the
particle insertion method using Audze-Eglais poten-
tial energy.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews relevant literature. Section 3 discusses the
proposed approach for generating new CAD models. The
numerical results of the proposed approach are given in Sec-
tion 4. Finally, concluding remarks and opportunities for
future work are presented in Section 5.

2. Related Works

The research in this paper is more relevant to the gen-
erative design and shape exploration research fields; thus
these fields represent the main focus here.

Generative design.Generative product design involves
classes of design techniques that first examine design goals
and then explore all possible permutations of a product.
Generative design methods generally employ constraint-
driven parametric search, and genetic and evolutionary al-
gorithms. Yu et al. [4] proposed a constraint-based cooper-
ative, interactive design method using genetic algorithms.
In this approach, the design process is entirely driven by the
designer and it represets the combination of constraint opti-
mization and modeling. Caladas [5] developed an evolution-
based generative design system for sustainable architecture
called as GENE ARCH. She demonstrated that building
performances can be enhanced by the integration of para-
metric generative schemes and building simulation software

for the evaluation of thermal performance. Bentley [6] first
specified a phenotype in the design space, and the geno-
type was defined based on the solution space. To evolve
the solutions, genetic algorithms were then utilized. Shape
grammar [7] can also be used to represent geometry in a
generative form, allowing a homogeneous model to be used
for the design representation and the tools to generate it.
Hornby and Pollack [8] developed L-system-based genera-
tive grammatical encoding. Their work showed that gen-
erative encoding of the genetic model can create signifi-
cantly appropriate solutions. Gu et al. [9] suggested a neural
network-based approach for exploring the designer’s pref-
erence in selecting designs. Moreover, Krish [10] proposed a
generative CAD-based design exploration method for com-
plex multi-criterion design problems. First, a genotype of
the design was built. Distinct designs were then obtained
by randomly varying parameters within pre-defined limits.
However, none of these approaches in the generative de-
sign field can perform automatic sampling while taking the
space-filling property into account, which would enable the
generation of distinct designs. Thus, we think that the tech-
niques listed above can be enhanced by using the sampling
method in this paper.
Shape Exploration. Forming a shape space and sam-

pling from it has recently attracted a lot of attention in
the computer graphics community. Ovsjanikov et al. [11]
presented an approach for learning variability within a set
of similar shapes. A deformation model is extracted auto-
matically, which is then deformed through a set of intuitive
deformation controls. Kalogerakis et al. [12] suggested a
technique to generate new shapes by identifying new plau-
sible combinations of segmented components from existing
shapes. Chaudhuri et al. [13] proposed a technique to create
visual content using relative semantic attributes (e.g., ad-
jectives, such as ”dangerous” or ”scary”) for design compo-
nents. During the interactive design stage, different combi-
nations of the components are selected and then assembled,
and finally, novel designs are obtained. Kleiman et al. [14]
proposed a dynamic map of shapes, where similar shapes
are placed next to each other. Users browse shapes by drag-
ging the map on the screen, which reveals new shapes that
are comparable to shapes in the dragging direction. Fish et
al. [15] introduced a meta-representation depicting a family
of shapes, which can be used for exploration of shape repos-
itories. Huang et al. [16] introduced a framework for com-
puting consistent functional maps within shape collections.
Many joint-shape analysis tasks, such as co-segmentation
and shape exploration, are possible in this representation.
Averkiou et al. [17] analyzed unorganized model collections
to embed the models into low-dimensional spaces. Users
can then explore the parametrized space to develop new
models by probing the empty regions. In addtiton, Yumer
et al. [18] proposed a method to create lower-dimensional
and generative representations of high-dimensional proce-
dural models using autoencoders. A shape design system
was introduced for the generation of novel procedural mod-
els using an explore-and-select interaction. Gao et al. [19]
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proposed an interactive exploration procedure for large 3D
model repositories. The user labels the preferred models or
parts so that recommended models are shown in the user
interface. Recently, Schulz et al. [20] developed tools allow-
ing interactive exploration and optimization of parametric
CAD data. The above-mentioned techniques need model
sets to be available in database to perform shape sampling.
However, it is not always possible to have a proper data
set of a product in the design phase. There can be few or
no CAD models in the initial design stage. The proposed
technique in this work allows us to generate design alterna-
tives without having a proper model set. Furthermore, it is
also possible to generate distinct designs via the proposed
sampling technique, as a space-filling property is integrated
into the technique.

Several works in the literature have explored shapes in
architectural geometry. Yang et al. [21] presented a com-
putational framework for shape exploration of constrained
planar quad and circular meshes. Moreover, Zhao et al. [22]
proposed intuitive tools to create new architectural free
form shapes from an input design while conforming a set of
prescribed constraints. However, these approaches are not
applicable in our setting, as our approach is based on CAD
models. There are also sampling algorithms in the litera-
ture, which can be adapted for shape sampling. Morris and
Mitchell [23] generated maximin distance Latin hypercube
designs via the spatial simulated annealing approach, tak-
ing sampling constraints into account. The Hit-and-Run
(HAR) algorithm [24] samples over a convex polytope de-
fined by linear constraints. The Bake-and-Shake (BAS) al-
gorithm [25] performs sampling from the boundary of a
convex polytope defined by a set of linear constraints. The
introduced sampling technique in this paper exhibits bet-
ter shape sampling performance in terms of space-filling,
as we demonstrate later.

3. Particle Tracing (PT) Algorithm

The PT algorithm is inspired by the mesh segmentation
techniques [1,26–28] that have become available in the lit-
erature. The motorcycle graph algorithm [1] developed by
Eppstein et al. is introduced for quadrilateral mesh segmen-
tation. Motorcycles or particles are inserted on the extraor-
dinary vertices where the number of neighboring vertices
is not four, except on the mesh boundaries. These particles
move outward from the extraordinary vertices and trace
the mesh along the edges. By doing this, quadrilateral par-
titions are obtained, where the traced mesh edges are on
the partition boundaries.

3.1. Method overview

The proposed method consists of three main steps. Af-
ter determining the processing time (t) and number of de-
sired shapes (k) to generate, particles are inserted into the
shape space. Geometric constraints and parameter ranges

are given to the PT algorithm as input, and the particles
are moved until reaching a position at which the geometric
constraints are satisfied. The particle insertion and trac-
ing steps are iteratively executed, and iterations terminate
when the total processing time (t) reaches the user-defined
execution time t in seconds. Finally, k representative shapes
are computed using a clustering-based technique. Figure 2
shows the flow of the proposed method.

3.2. Basic terminology and research goal

The shape of a CAD product is represented and can
be generated using geometric parameters. Geometric con-
straints define the mathematical relationships between ge-
ometric parameters via equalities and inequalities. Shape
space S is an n-dimensional space where each geometric
parameter is represented by a dimension in S. The shape
space is formed by geometric parameters and their value
ranges (i.e., lower and upper bounds). In this research, we
assume that geometric parameters, geometric constraints,
and parameter value ranges for a product’s shape have been
already determined in advance.

A shape is a point, and it is represented by coordinates
(α1, α2, ..., αn) of each dimension in S. These coordi-
nates are the values of the shape’s geometric parameters.
The lower and upper bounds for the geometric param-
eters (α1, α2, ..., αn) are denoted by (τ l1, τ

l
2, ..., τ

l
n) and

(τu1 , τ
u
2 , ..., τ

u
n ), respectively. S represents the scaled shape

space, where the coordinates (α1, α2, ..., αn) are the scaled
parameter values varying between 0 and 1; these represent
the lower and upper bounds, respectively, of the param-
eters (α1, α2, ..., αn). In addition, (φ1, φ2, ..., φi) denote a
set of geometric constraints where i is an integer. In fact,
shape space consists of feasible and infeasible shapes. A
shape is feasible if all geometric constraints are satisfied
for its geometric parameters. Otherwise, it is infeasible.

The goal of this research is to perform shape sampling
and find feasible shape alternatives with distinct geome-
tries in the shape space. Enumerating these alternatives
one-by-one in the shape space is impractical if n is large.
For example, if three parameter values for each dimension
within geometric parameter ranges are assigned in a 30-
dimensional shape space, 330 feasible and infeasible shape
alternatives can be found, which is computationally expen-
sive. As a result, a greedy approach is suggested to find fea-
sible shapes in the shape space. The tracing methodology
and particle insertion of the proposed method, which are
employed to find feasible shapes in the shape space, will be
elaborated later in the following subsections.

3.3. Insertion of particles

A single particle can only trace a small portion of the
shape space S. Particles inserted at source points in differ-
ent locations of S enable the generation of different feasible
shapes. A careful selection of the source points is of pri-
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Fig. 2. The particle insertion and tracing algorithms are executed iteratively until reaching the user-defined execution time (t). k representative

shapes are found next by means of a clustering technique.

mary importance. Source points should be evenly spread
(i.e., space-filling) in the shape space to have a global ex-
ploration of the space. The method of Audze and Eglais
[2,3] is utilized for the particle insertion, which is based on
the analogy of minimizing forces between charged particles.
Particles are in equilibrium when the potential energy is at
the minimum. For the insertion of Y particles in the shape
space, the potential energy E is introduced as follows:

E =

Y∑
p=1

Y∑
q=p+1

1

D2
pq

, (1)

where

Dpq =

√√√√ n∑
m=1

(αpm − αqm)2. (2)

Here, Dpq is the scaled distance in S between the source
points p and q, whose coordinates are denoted by αp and
αq, resp.

Beyond the space-filling property, source points are cho-
sen to be non-collapsing [29,3], which means that two
points with a common parameter value should not exist.
Without the non-collapsing property, the source points may
spread over the shape space boundary for high dimensional
space problems [30]. Because the energy function E is mini-
mized when source points reside on the shape space bound-
ary. The non-collapsing property can enable the generation
of source points on the inner portions of the shape space.
Figure 3 (a) illustrates a 2D shape space. The four source
points in red are generated using only the space-filling prop-
erty, and the points are located at the corners of the space.

Fig. 3. (a) Generation of source points (Y = 4) considering only
space-filling property; (b) source point generation considering only

the non-collapsing rule (Y = 30); (c) source point generation consid-
ering both the space-filling and non-collapsing properties (Y = 30)

The optimization problem for the generation of source
points requires the minimization of the potential energy E
and can be formulated as:

min→ E, (3)

with

0 ≤ αzm ≤ 1 for m = 1, . . . , n and z = 0, . . . , Y − 1,
(4)

ψpm 6= ψqm. (5)

The range of each geometric parameter is divided into
Y − 1 equally probable intervals. The scaled parameter
value αzm is obtained using Eq. 6 where ψzm is the corre-
sponding integer coordinate value between 0 and Y − 1 for
αzm in the mth dimension. Recall that αzm = 0 and αzm = 1
denote the lower and upper bounds, respectively, for the
geometric parameter αzm.

αzm =
ψzm
Y − 1

, (6)

where

0 ≤ ψzm ≤ Y − 1. (7)

To find source points in the shape space, points are first
randomly sampled while considering the non-collapsing
property. These samples are then improved via a permuta-
tion genetic algorithm [31] to minimize the energy E (i.e.,
space-filling property). Single coordinates of two source
points are swapped via cross-over operator if E decreases.
Figure 3 (b) illustrates randomly sampled source points
(Y = 30). Source points are evenly distributed after several
swapping operations (c).

3.4. Tracing methodology

In a n-dimensional shape space, we take a similar particle
tracing approach as that used in the previously suggested
techniques [1,26–28] to find feasible shapes. As stated
above, note that searching for feasible shape alternatives in
the shape space is computationally expensive for larger n
values. Thus, a greedy approach is adopted to find feasible
shapes in the shape space. A particle is first inserted at a
source point in the shape space. The particle is moved by
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Fig. 4. Two-dimensional particle tracing: A particle (in yellow) is inserted at the source point and can be moved along four directions in the
shape space(a). One of these directions is selected according to a cost function and moved along this direction. For the next particle tracing

operations (b-i), there are at most three moving directions, and the particle is moved in a similar manner. The particle stops when it reaches

the boundary of the shape space in light blue. Traced points are shown with black circles, some of which can represent feasible shapes.

some amount in a direction from this point and traces an-
other point in each move in the shape space. If the traced
point satisfies all the geometric constraints, it is regarded
as feasible shape. Otherwise, it is infeasible. Particle tracing
continues until the particle stops. Finally, one or more feasi-
ble shapes can be obtained. Note that the inserted particle
does not always find a feasible shape in the shape space.

3.4.1. Particle tracing rules
In the n-dimensional shape space, a particle can move in

2n different directions. Movement direction is determined
using a cost function, which is introduced below. The parti-
cle moves along one of 2n directions by an amount (i.e., step
size) to minimize the cost function. Figure 4 demonstrates
a particle movement in a two-dimensional shape space. For
the sake of simplicity, tracing rules are explained in 2D.
These rules are similar for an n-dimensional shape space.
As shown in Fig. 4 (a), there are four (2n) directions for
the initial movement after inserting the particle into the
source point. The particle moves along one of these direc-
tions, in which the cost function receives the lowest value.
For the next movements (b-i), there are at most three (≤
2n − 1) movement directions. The particle moves until it
stops. The traced points are stored and then checked in
terms of whether they are feasible or infeasible shapes.

Particles are moved along the direction with a specified
step size, which is computed based on an interval division
constant ρ and a positive integer. The step size is computed
separately for each dimension of the shape space. In the
mth dimension (where m = 1, . . . , n), the step size sm is
calculated as follows:

sm = (τum − τ lm)/ρ. (8)

Particles moving in the shape space stop based on some

PT rules. Figure 5 shows the termination criteria, which
are detailed as follows:

(a) Cross collision: Two particles (in yellow and or-
ange) meet at a point where moving directions are
perpendicular to each other. One of these particles
stops and other one continues tracing in the shape
space;

(b) Parallel collision: Two particles (in yellow and or-
ange) collide on a point where moving directions are
parallel to each other. Both particles stop;

(c) Meeting a previously traced point: A particle (in
orange) reaches a point that has already been traced
by another particle (in yellow). The particle in orange
stops, and the other one continues tracing;

(d) Unimproved cost value: A particle reaches a point
where the cost value does not decrease further in any
of the moving directions. In this case, the particle
stops; and

(e) Exceeding the shape space boundary: Particle
movement outward to the shape space boundary is re-
stricted. If a particle exceeds the shape space bound-
ary (light blue in Fig. 5), it terminates.

Note that the termination criteria (a), (b), and (c) are
unlikely to occur in high-dimensional spaces.

3.4.2. Cost function
There are penalty function methods [32,33] that approx-

imate a constrained problem by an unconstrained problem
in such a way that minimization favors satisfaction of the
constraints. These techniques add a penalty term to the ob-
jective function; this consists of a penalty parameter multi-
plied by a measure of violation of the constraints, which is
nonzero when the constraints are violated and zero where
they are not violated. Here, we take a similar approach.
A cost function (F ) is introduced based on the geometric
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Fig. 5. Termination criteria for particles: (a) cross collision, (b) par-
allel collision (c) meeting a previously traced point, (d) unimproved

cost value, (e) reaching shape space boundary.

constraints. F is computed separately for each particle po-
sition (i.e., point in the shape space) to determine particle
movement directions. The function is formulated as follows:

F =

i∑
t=0

C(φt). (9)

Here, φt denotes a geometric constraint and the function
C(φt) penalizes a shape or a point in the shape space S
if it does not satisfy the constraint φt. Both equality and
inequality geometric constraints can be handled in the cost
function F . Let f(φt) denotes the equation for φt which can
be 0 (greater/smaller than 0) for the equality (inequality)
constraints (i.e., f(φ0) = α1−α3, see Table 13).C(φt) is 0 if
the equality or inequality constraint is satisfied. Otherwise,
it is the absolute value of the f(φt) equation. Note that F is
0 for a feasible shape in the shape space. With this function,
particle movements toward feasible shapes are favored. In
each particle move, the cost value decreases and the particle
moves closer to the feasible shapes.

3.5. Proliferation of new particles

Particles inserted at the source points move based on the
PT rules, and some reach feasible points before termina-
tion. There can be more feasible points around a feasible
point. Therefore, new particles are generated from a parti-
cle (called parent particle) reaching a feasible point in a pro-
cess called spawning. Newly generated particles are called
spawn particles. A parent particle spawns Y spawn parti-
cles.

Spawn particles can reside in a reduced shape space de-
noted byH, which represents a hypercube, where the center
is the feasible point at which the parent particle is located.
The maximum side length of H is denoted by r. The hy-
percube H is a sub-space in the shape space S, where H ⊂
S, and it is formed by computing lower and upper bounds

Fig. 6. A particle moves towards a feasible point (yellow dot) and

stops. A hypercube (depicted with a pink rectangle) is formed around

the feasible point where spawn particles will be inserted and move.
Another particle on the right reaches the hypercube that has formed

and terminates.

in each dimension using the center and side length. Spawn
particles are located inside the hypercube while minimiz-
ing the potential energy E (in Equation 3) between these
particles using the methodology described above.

Figure 6 illustrates a part of a shape space in 2D, where
the boundary is in blue. Four particles are inserted, and
one of them reaches the feasible point shown by the yellow
dot. A hypercube, depicted with a pink rectangle, is formed
around this point. Spawn particles are inserted in this hy-
percube and move using PT rules until termination. Some
of these particles are expected to reach feasible points. Note
that all other particles will pause and wait for the termina-
tion of the spawn particles. The other particles then con-
tinue their movement in the shape space. A new PT rule
is introduced here for the particles other than spawn par-
ticles.

(f) Reaching a hypercube boundary: If a particle
reaches a hypercube boundary, it terminates (see the
particle on the bottom right in Fig. 6), as it is assumed
that spawn particles already performed a search there
to find feasible points.

3.6. Multiple runs of the PT algorithm

The proposed PT algorithm generates feasible points,
and the number of such points depends on the number of
inserted particles Y . With the increase in Y , the number of
feasible points obtained by the PT algorithm is expected
to increase. However, it has been confirmed that the com-
putational time taken for the particle insertion step is high
[34] for larger values of Y ; this is due to the swapping op-
erations between coordinates of Y source points described
previously. Therefore, we recommend a more practical us-
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age scenario in this section.
The PT algorithm is run multiple times with lower val-

ues of Y . In each run, hypercubes formed during particle
tracing are stored in a hypercube set denoted by H. Parti-
cles are inserted as far as possible from the hypercubes in
the set H. Therefore, a new potential energy is introduced
for the particle insertion that must be minimized, and this
is defined as follows:

Et = E + θ ∗ Ec, (10)

where

Ec =

Y∑
0

1

d2z
, (11)

dz =

{
1e-9, if p∩H 6= ∅
min
p
Dpb, otherwise.

(12)

The potential energy Et has two terms and a coefficient.
The function E is the previously defined potential energy
in Section 3.2. The function Ec computes the proximity of
source points to the hypercubes in H, and its weight is ad-
justed by the coefficient θ, which is set to 1.0 in this study.
The empty set is denoted by ∅ in Eq. 12. Moreover, the
value of dz is close to 0 if the source point p is inside any
hypercube in the set H. Otherwise, it is the distance Dpb

denoting the scaled distance in S between the source point
p and the closest hypercube boundary b in H. By including
this parameter, we penalize source points that are in close
proximity to the hypercubes in H. Recall that a feasible
point search has been already performed in these hyper-
cubes by the previous runs of the PT algorithm. Figure 7
illustrates particle insertion while considering hypercubes
formed after the previous algorithm runs. New particles (in
yellow) are inserted as far as possible from the hypercubes
(in pink), as shown in Fig. 7 (b). As a result, different por-
tions of the shape space can be searched via the PT algo-
rithm. Finally, to store only distinct shapes, the parame-
ter β is introduced, and this enables the storage of feasi-
ble shapes that have a minimum distance β (in the scaled
shape space) from the previously traced feasible shapes.
The parameter β is called the sampling density. If a dis-
tance between a feasible shape and the previously traced
feasible shape is smaller than β, the one that is close to its
nearest-neighbor is removed.

3.7. Finding Representative Shapes

A single run of the particle insertion and tracing algo-
rithms does not guarantee to produce Y shapes, particu-
larly for the constrained shape spaces (Y is user-defined).
In the constrained spaces, a single run of the particle in-
sertion and tracing steps may generate feasible shapes that
are not very well distributed in the shape space as infea-
sible regions may spread irregularly. Via multiple runs of

Fig. 7. Particle insertion considering the hypercubes formed after

the previous algorithm runs.

these steps, feasible shapes are obtained and only some rep-
resentative shapes are chosen, which can be shown to the
users. When the PT algorithm terminates after reaching
the user-defined run time, the feasible shapes obtained are
grouped into clusters. The most k representative shapes
of each cluster, called medoids, are computed (see Fig. 2)
via the k−medoids algorithm. We think that the cluster
medoids are prototypes of their clusters and can represent
them to some extent.

Given a set of feasible points (f1, f2, . . . , fs), k-medoids
clustering aims at partitioning the s feasible points into k
feasible point sets (i.e., clusters) C = C1, C2, . . . , Ck where
k ≤ s, Cy ∩ Cz = ∅, 1 ≤ y, z ≤ k, and k, s, y, and z
are integers. The objective is to minimize the sum of the
scaled distance (recall Eq. 4) in S from each point in the
cluster Ci in relation to the cluster medoid µi. In other
words, dissimilarity between any point and a medoid within
a cluster is minimized so clusters are well represented by
their medoids. The objective function is written as follows:

M =

k∑
i=1

∑
f∈Ci

‖f − µi‖. (13)

The partitioning around medoids (PAM) algorithm is
used for k-medoid clustering, which is summarized below.

1. Select randomly k feasible points as the medoids.
2. Associate each feasible point with the closest medoid.
3. For each medoid µi and each feasible point f associated

with µi, swap µi and f . Compute the objective function
M . Select the feasible point with the lowest M value as the
medoid of the cluster.

4. Repeat steps 2 and 3 until there is no change in M .

The k representative shapes are chosen to be the cluster
medoids generated by the PAM algorithm.

4. Experiments and Discussion

4.1. Test models

For the validation of the proposed technique, eight test
models are created, as follows: a ewer main body, a car
body, a car hood, a yacht hull, a wheel rim, a wine glass, a
bottle, and a park shed. These models, their geometric pa-
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rameter with their ranges (i.e., lower/upper bounds) and
their geometric constraints are outlined in Appendix. Re-
call that the objective of this study is to perform shape
sampling for a given set of geometric constraints and pa-
rameter ranges, which are defined heuristically in this work.
We initially define a set of geometric constraints and see
the shapes generated after sampling. If implausible shapes
are generated, new constraints are included in the sampling
algorithm. By doing this iteratively, a set of geometric con-
straints is obtained. Parameter ranges are determined in a
similar manner. Note that geometric constraints and pa-
rameter ranges must be selected carefully to form a better
shape space containing many feasible shapes. The feasible
shape space becomes narrower if redundant geometric con-
straints are introduced. In contrast, with fewer geometric
constraints, shapes designated implausible by designers or
consumers may be generated. A future work will be carried
out to identify the proper set of geometric constraints for
a given CAD product.

4.2. Results

Figures 8 and 9 show representative instance models for
the eight CAD models generated by multiple runs of the PT
algorithm for the Y = 10 and t = 1200 settings. It has been
observed that distinct shapes in terms of appearance are
obtained after application of the PT algorithm. For larger
values of Y (i.e., number of inserted particles), the number
of shapes NS obtained is higher, as shown in Table 2. Com-
putations are performed for different Y settings when the
hypercube length r and the sampling density β are set to
0.5. NS is squared exponentially proportional to Y . Recall
that after a particle reaches a feasible point, Y spawn par-
ticles are generated from the particle and continue tracing
in the sub-shape space. Y particles can generate at most
Y 2 feasible points. Note that the swapping operation that
is applied to distribute source points evenly is not utilized
for the Y = 50, Y = 100, and Y = 200 settings due to its
high computational cost [34]. Single run of the PT algo-
rithm with a lower Y and multiple runs with a larger Y were
tested. Former test was performed under a setting where Y
is equal to 20. Its processing time was then set in the latter
run and solution qualities were compared with different set-
tings. Table 1 shows results of these runs when k value was
chosen 10 in the clustering algorithm. It was observed that
the potential energy (E) of the representatives in the mul-
tiple runs was generally less than those in the single run.
Therefore, the representatives in the multiple runs mainly
achieved better space-filling. Table 3 shows the number of
shapes generated in a single run with Y = 10 for the ewer
main body model. It can be observed that the number of
shapes obtained differs for each run and varies between 22
and 49. This is because of the randomization process that
is used for finding the initial source point positions before
the swapping operation. As a result, we recommend mul-
tiple runs of the PT algorithm for the generation of more

Table 1

Single and multiple runs of the PT algorithm (s: seconds)

Model
Single Run Multiple Runs

tp Ns E t Ns E

Ewer 460 s 156 8.46 460 s 580 8.98

Car body 252 s 84 16.74 252 s 173 9.02

Hood 290 s 130 40.95 290 s 1134 39.06

Yacht Hull 157 s 21 53.11 157 s 179 43.53

feasible shapes.

NS 45 50 22 49 32 34

tp 19.1 20.7 19.5 21.8 16.6 14.6

Table 3

Performance of the proposed algorithm for the ewer main body with
the Y = 10, r = 0.5 and β = 0.5 settings

Computational time: A PC with an Intel Core i7 6700
3.4 GHz processor and 16 GB memory is used for the ex-
periments in this study, and the implementation is single-
threaded. Tables 2 and 3 show the computation time taken
for the PT algorithm. The processing time tp for the ewer
main body model varies between 15 and 1451 seconds, de-
pending on the Y settings. For the car side silhouette model,
the time taken for the proposed method is between 9 (Y =
10) and 1057 (Y = 200) seconds. Since inserting many par-
ticles in the shape space increases the number of particle
tracing operations, the processing time increases for larger
values of Y . Recall that setting large values for Y enables
the generation of distinct shapes in the shape space. In con-
trast, for larger values of Y , such as 1000, the PT algorithm
is computationally expensive, as the algorithm is exponen-
tially proportional to Y values. Therefore, we recommend
the application of multiple algorithm runs using smaller Y
values. The computation time also depends on the inter-
val division constant ρ, which is based on the step size se-
lected for the PT algorithm. In our experiments, ρ is set to
1000. Setting it to larger values will increase the process-
ing time, as particles move with smaller steps. However,
setting smaller values will decrease the number of shapes
generated.

PT algorithm runs: The PT algorithm is executed
multiple times to obtain more shapes. It has been observed
that the number of shapes generated increases with the
computation time of the algorithm. In other words, the
longer the algorithm runs, the greater the number of fea-
sible shapes generated. Let Ω be the nearest-neighbor dis-
tances for each feasible point in the feasible shape set ζ:
Ω = {minDpq : p ∈ ζ}. Nearest-neighbor distances are
computed and stored in Ω for every point in the set ζ. Re-
call that Dpq is computed using Eq. 4. Dave denotes the
average distance of the distance set Ω, while Dmax is the
maximum distance in Ω. Upon a completion of each run,
Dave and Dmax are computed. Figure 10 shows that these
values for the ewer body, yacht hull and park shed models.
Both Dave and Dmax get closer to be stabilized after ap-
proximately 150, 200 and 400 runs, respectively. To some
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Fig. 8. Wine glass, car body, wheel rim, and car hood models generated by the proposed technique.

Parameter Ewer Main Body Car Body Car Hood Yacht Hull Wheel Rim Wine Glass Bottle Park Shed

Y 10 20 50 100 200 10 20 50 100 200 10 10 10 10 10 10

NS 40 150 1202 4431 18110 11 45 390 1768 7441 56 15 38 56 62 11

tp 15.0 424.4 106.5 369.4 1451.2 9.3 150.9 64.9 295.8 1057.9 3.5 2.1 2.5 4.1 3.6 2.1

Table 2

Performance of the proposed algorithm with different Y settings when r = 0.5, β = 0.5 (NS = Number of shapes obtained, tp = Computational

time in seconds)
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Fig. 9. Yacht hull, ewer main body, bottle, and park shed models obtained in the proposed work.
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extent, this is an indication that the feasible shapes are well
distributed in the shape space.

Setting algorithm parameters: Since the shape space
is n-dimensional, the diagonal of the scaled shape space
S is

√
n. For the CAD models used in this work, the di-

agonal length of their scaled shape space is
√

38. In light
of this information, β is assigned a value of 0.5 in the ex-
periments. When β is set to smaller values, the number of
shapes obtained by the proposed algorithm increases, and
shapes that are similar in appearance will exist in the ob-
tained shape set. The hypercube length r is also set to 0.5
in the experiments. Assigning higher values, such as 2.0, for
this parameter has been attempted, but few shapes are ob-
tained by the PT algorithm, as the computed source points
always reside in the generated hypercubes. Therefore, the
particles inserted there stop according to the tracing rule
(f) above.

4.3. Comparing the proposed work with the existing
methods

Here, each step of the proposed technique (i.e., particle
insertion, particle tracing and representatives selection) is
evaluated separately.

Alternative methods for particle insertion: Ran-
dom sampling (RS) and low discrepancy sequence (LDS)
of Halton [35] are utilized to insert particles evenly in the
shape space. Table 4 shows the experimental results with
the Y = 10 and Y = 20 settings for all eight test models. It
was observed that potential energies for the particles gener-
ated by RS and LDS are higher than those of the proposed
insertion technique, and therefore, the particles obtained
by our technique have a better space-filling property.

Alternative techniques for moving particles: The
particle tracing step of the proposed method is compared
with a nonlinear solver, which brings an infeasible point to a
nearby feasible point. In short, a feasible point is found that
is closest to the particle placed in the particle insertion step
while the cost function F in Eq. 9 is forced to zero at the
feasible point (i.e., all geometric constraints are satisfied).
The nonlinear solver, SNOPT of Gill et al. [36,37], applies a
sparse sequential quadratic programming algorithm, using
limited-memory quasi-Newton approximations to the Hes-
sian of the Lagrangian. SNOPT was replaced with the parti-
cle tracing technique and the results were analyzed in terms
of two metrics: the potential energy, E, between result-
ing k-representatives and the variance measuring how well
the representative represents the cluster. Variance (var) is
computed using the below equation:

V ar =

∑k
i=1

∑
f∈Ci

(‖f − µi‖)2

s
. (14)

Here,Ci and µi denote, respectively, the cluster and clus-
ter representative where i varies between 1 and k. ‖f − µi‖
is the Euclidean distance between the feasible shape f in Ci

and the cluster center µi of Ci. s denotes the total number
of feasible shapes in the clusters.

Table 5 shows the results with the k = 10 and t =
600/1200 settings for the ewer body, car body, car hood
and yacht hull models. We observed that the PT algorithm
mainly generated better results (i.e., less potential energy
and less variance) than those of the nonlinear solver. Less
potential energies of the representatives for the PT algo-
rithm were achieved except in case of the yacht hull model
experiment with the t = 600 setting. Finally, in terms of
variance, the PT algorithm generated lower variance values
for the ewer body, car body and yacht hull models.

Instead of moving a particle in a single direction during
particle tracing, the particle is moved in the gradient de-
scent (GD) direction, which is computed using finite dif-
ferences. g denotes the GD direction at a particle location,
which is as follows: g = [g1, g2, · · · , gn]

T
, where n is the

number of dimensions in the shape space. Recall that α =
(α1, α2, ..., αn) denotes the particle location and Fα repre-
sents the constraint violation function (see Eq. 9) for α. Let
αm+ and αm− be, respectively, the forward and backward
positions when the particle moves, respectively, in the pos-
itive and negative mth directions by the step size s. The
gradient gm in the mth direction is computed as follows:
gm = (Fαm+ − Fαm−)/2s. Let g be the normalized vector
of g. The new location α′ of a particle is found using the
following equation: α′ = α+ g ∗ s. In the GD method, the
particle moves until F is zero or greater than its previous
position. To validate the performance of this method, s is
set to 0.1, 0.01, 0.001 and 0.0001. Table 7 (c) shows the
results for the six test models. Note that the GD method
was replaced with the particle tracing technique and all
other steps (i.e., the particle insertion and representatives’
selection stages) remained same. It was observed that the
GD method produced less number of feasible shapes com-
pared to the particle tracing algorithm. In most cases, the
PT algorithm produced more evenly sampled shapes (i.e.,
minimization of the potential energy E) in the shape space
compared to the GD technique.
Alternative techniques for shape representative

selection: There are several methods in the literature that
can be used for the selection of shape representatives. k-
means and mean shift algorithms are appropriate for these
selections, and thus, they are analyzed here. The results are
evaluated using two metrics, as follows: space-filling (E)
and variance (var).

Table 6 shows the clustering results in terms of space-
filling and variance. Experiments are performed for all eight
models, and parameter settings are shown in the table. The
same number of clusters are obtained for all the algorithms.
Mean shift has a window radius (hw) parameter and ap-
propriate values of hw for the test models to obtain same
number of clusters listed in Table 6. According to these re-
sults, representatives obtained by the k-medoids have bet-
ter space-filling properties than those of mean shift and
k-means algorithms. Based on the experiments conducted,
there were cases where k-medoids performed both better
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Fig. 10. Dave and Dmax are, respectively, the average and maximum nearest-neighbor distances for the feasible shapes obtained. Dave and

Dmax are close to stable values after running the proposed method several times.

Table 4

Comparison of the proposed particle insertion technique with alternative methods (E: potential energy, tp: processing time in seconds)

Model

Y = 10 Y = 20

RS LDS Our Technique RS LDS Our Technique

E tp E tp E tp E tp E tp E tp

Ewer body 27.82 <0.1s 9.54 <0.1s 5.28 0.76s 121.58 <0.1s 36.62 <0.1s 25.71 21.6s

Car body 27.22 <0.1s 9.25 <0.1s 5.2 0.64s 121.78 <0.1s 37.2 <0.1s 26.18 33.06s

Car hood 102.24 <0.1s 32.64 <0.1s 18.14 0.12s 470.16 <0.1s 133.28 <0.1s 94.73 6.8s

Yacht hull 104.62 <0.1s 31.93 <0.1s 17.66 0.17s 462.11 <0.1s 129.29 <0.1s 90.94 7.52s

Wheel rim 118.2 <0.1s 35.97 <0.1s 19.48 0.16s 533.9 <0.1s 148.19 <0.1s 100.48 6.16s

Wine glass 67.32 <0.1s 22.16 <0.1s 12.2 0.23s 309.4 <0.1s 101.37 <0.1s 62.36 14.3s

Bottle 68.64 <0.1s 23.92 <0.1s 12.45 0.2s 294.56 <0.1s 93.28 <0.1s 62.0 5.43s

Park shed 159.18 <0.1s 46.84 <0.1s 24.59 <0.1s 680.2 <0.1s 199.52 <0.1s 126.36 6.6s

Table 5

Comparing the PT algorithm with a nonlinear solver (PT: The PT algorithm, NLS: The nonlinear solver SNOPT)

Model
t=600 t=1200

PT NLS PT NLS

E var E var E var E var

Ewer body 9.544 3.589 9.752 3.670 10.298 3.597 10.301 3.668

Car body 11.286 2.495 12.684 2.819 12.726 2.602 13.595 2.686

Car hood 36.547 0.756 41.559 0.651 39.147 0.759 42.167 0.648

Yacht hull 56.236 0.502 52.579 0.581 48.570 0.515 52.431 0.605

and worse than mean shift and k-means algorithms in terms
of variance. We have observed that computational time for
the mean shift algorithm is higher than those of other two
techniques (see Table 6). As a result, we recommend using
k−medoids technique to obtain shape representatives.

Comparing the proposed method with the spatial
simulated annealing technique: We compare our work
with spatial simulated annealing (SSA) technique [38–40],
which is implemented and adapted to the research problem
discussed in this paper. Sampling quality is measured based
on the computational time and the space-filling property
(the Audze-Eglais potential energyE, Equation 3). The PT
algorithm generates many shapes; thus, we choose k sam-
ples among them that minimizes E via a greedy approach.

The restricting distance H will be shortened as the
simulated annealing temperature decreases and the initial
length of H is taken as 1.0. The initial temperature is set

to 80.0, and the algorithm stops when it becomes less than
0.00008. S denotes the shortening rate for T , and different
S values are assigned for the experiments. The Markov
chain length L is set to 10 times greater than the sample
number Y , as suggested by Chen et al. [39]. For a given k
samples, a new solution Si+1 is generated from Si by means
of a random perturbation in one of the samples in Si.
Chen et al. moved the randomly chosen point over a vector
→
h , with the direction chosen randomly. The length

∣∣∣→h ∣∣∣
of
→
h takes a random value between 0 and H. When such

perturbation is applied to the problem in this paper, the
sample being perturbed is often invalid, as it is easy for it
to flee out of the sampling region (shape space). Therefore,
→
h is set to be one-directional, and only one coordinate of
the sample is perturbed. As a fitness function, the Audze-
Eglais potential energy E (see Eq. 1) is used in the SSA
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Table 6
Comparing k-medoids with other clustering techniques (s =seconds, m =minutes, hr =hour)

Mean shift k-means k-medoids
Model

E var tp E var tp E var tp
# of Shapes Parameter values

Ewer body 43.394 2.525 5.53 m 46.873 3.313 0.059s 36.081 3.232 0.224 s 976 Y = 10, t = 1200, k = 20, hw = 1.7895

Car body 53.36 1.804 2.46 m 49.962 2.370 <0.05 s 48.609 2.292 <0.05 s 467 Y = 10, t = 1200, k = 20, hw = 1.585

Car hood 157.582 0.758 4.41 hr 55.873 0.741 0.109 s 43.116 0.722 0.531 s 2054 Y = 10, t = 1200, k = 10, hw = 0.829

Yacht hull 89.68 0.598 2.79 m 55.495 0.508 <0.05 s 49.696 0.515 <0.05 s 437 Y = 10, t = 1200, k = 10, hw = 0.689

Wheel rim 632.556 0.746 1.83 hr 247.167 0.634 0.094 s 162.538 0.622 0.35 s 1742 Y = 10, t = 1200, k = 20, hw = 0.773

Wine glass 137.433 1.156 34.7 hr 131.904 1.051 0.10 s 106.403 1.061 0.30 s 1764 Y = 10, t = 600, k = 20, hw = 0.9735

Bottle 181.1 1.1 53.4 m 118.943 1.255 0.09 s 98.579 1.166 0.31 s 1604 Y = 10, t = 400, k = 20, hw = 1.062

Park shed 694.726 0.68 1.5 hr 382.242 0.535 0.10 s 189.524 0.493 0.28 s 1907 Y = 10, t = 400, k = 20, hw = 0.639

approach. The initial solution (S0) consists of only feasible
samples (satisfying predefined geometric constraints) that
are obtained using a random perturbation of samples. If a
feasible sample does not satisfy the geometric constraints
after perturbation, that perturbation is not performed.

To compare the PT algorithm with the SSA approach,
the car body model with the geometric ranges and con-
straints (see Tables 15 and 16) is used. Table 7 (a) shows
the computational time tp of the SSA approach and E for
different values of S and k. As S nears 1, E decreases with
the increase in tp. Table 7 (b) depicts the performance of
the PT algorithm using multiple runs with Y = 10 and dif-
ferent t settings. For k = 10, the processing time tp is 3004.3
seconds, and the potential energyE of the k samples is 5.46.
The potential energy E for the SSA approach is 6.5 with a
processing time tp of 4869.0 seconds. For k = 100, the PT
algorithm generates samples with lower potential energies
than those of the SSA approach. As a result, the PT algo-
rithm generates samples with better space-fillingness than
those of the SSA approach in a shorter time.

We further tested all eight models using the PT algo-
rithm with the Y = 10 and k = 20 settings. T and S were
set to 0.00008 and 0.9999, respectively, for the SSA ap-
proach. We first executed the SSA algorithm and the pa-
rameter t in our method was set to the processing time
of the SSA approach. Table 7 (c) shows the performances
of both methods. According to the experimental results, k
shapes obtained by our technique have lower potential en-
ergies than those produced by the SSA algorithm. In other
words, our technique generates shapes that are more evenly
spread throughout the shape space.

Comparing the proposed work with the random
sampling and low discrepancy sequence: The pro-
posed work is also compared with the random sampling
(RS) and the low discrepancy sequence (LDS) of Halton
[35]. No subsequent optimization was utilized in these ap-
proaches. The RS method was executed until desired num-
ber (i.e., 10) of feasible shapes is obtained, while the pro-
posed work run only once with the Y = 10, k = 10 settings,
and the number of samples to generate was set to a num-
ber (i.e., Y ) in the LDS approach. Table 8 shows the re-

Table 8

Comparison of the proposed work with the random sampling (RS)

and low discrepancy sequence (LDS) (tp = processing time, NA =
Not Available).

Proposed Work (Y = 10, k = 10) RS LDS
Model

E tp E tp E tp Y

Ewer body 8.01 14.1s 22.41 2.96s NA 0.82s 1000

Car body 12.31 19.44s 36.32 4.82s NA 0.81s 1000

Car hood 19.12 2.31s 29.64 <0.1s 29.07 <0.1s 30

Yacht hull 38.25 1.25s 50.99 0.66s NA 0.5s 1000

Wheel rim 19.63 1.73s 33.57 <0.1s 36.31 <0.1s 10

Wine glass 16.87 2.0s 26.39 0.22s 36.39 <0.1s 50

Bottle 14.47 2.64s 20.28 <0.1s 19.8 <0.1s 14

Park shed 26.28 1.24s 43.92 <0.1s 43.9 <0.1s 10

sults for all three methods. Results show that the proposed
approach generated feasible shapes with potential energies
less than those RS and LDS. Additionally, when the LDS
algorithm was executed to generate 1000 shapes, it could
not find feasible shapes in some cases (i.e., ewer body, car
body and yacht hull models).
Additional experiments: The potential energy E is

also considered while moving particles in the shape space.
A new cost function is employed as follows: F ′ = F + c∗E.
c is a user-defined positive integer, and set to 0, 0.1, 0.5
and 1 in the experiments. Table 9 shows results for six test
models where the proposed algorithm runs once as well as
multiple times (t = 300). Both Y and k are set to 10. In
most cases, better results (i.e., minimization of E) were
obtained when c is set to 0. It is probably because setting
c to a value different from 0 gives a lower freedom to the
particles to move towards the feasible shapes during the
particle tracing step. Notice that less numbers of feasible
shapes (i.e., Ns) were obtained when c is greater than 0.
Based on these experiments, we recommend utilizing only
the cost function F in the particle tracing stage.
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Table 7
Performance of approaches considered in this study. (a) The spatial simulated annealing approach, (b) multiple runs of the PT algorithm

for the car body model, (c) The SSA algorithm, the proposed approach with the PT algorithm and with the gradient descent (GD) method

(tp, t: respectively, computational and processing time in seconds, Ns: number of shapes after the PT algorithm).

(a)

Parameter The Spatial Simulated Annealing Approach

k 10 10 10 100 100 100 100

S 0.99 0.9999 0.999999 0.99 0.999 0.9999 0.99999

tp 1.6 58.2 4869.0 633.0 1111.2 4812.8 10827.4

E 10.6 10.3 6.5 1212.4 1189.4 1100.2 735.5

(b)

Parameter Proposed Work (Y = 10)

k 10 10 10 10 10 100 100 100 100 100

tp 65.3 124.9 241.2 1006.6 3004.3 123.8 245.2 1009.2 3012.2 10007.8

E 6.84 6.71 5.99 5.65 5.46 1027.6 961.9 776.2 722.1 684.6

(c)

SSA (k = 20) Proposed Work (Y = 10, k = 20) GD (s = 0.1) GD (s = 0.01) GD (s = 0.001) GD (s = 0.0001)
Model

E tp E t Ns E t Ns E t Ns E t Ns E t Ns

Ewer body 33.581 127s 26.63 127s 328 28.24 127s 87 28.48 127s 101 29.86 127s 79 40.52 127s 31

Car body 42.304 145s 32.04 145s 196 36.09 145s 50 37.08 145s 72 60.22 145s 22 - 255s 5

Car hood 109.727 79s 78.87 79s 837 84.06 79s 452 81.83 79s 791 83.83 79s 543 94.68 79s 44

Yacht hull 157.786 71s 109.86 71s 164 127.52 71s 95 119.17 71s 132 118.13 71s 136 135.12 71s 63

Wine glass 73.745 60s 56.24 60s 806 56.64 60s 425 55.79 60s 505 56.0 60s 575 56.23 60s 475

Bottle 62.033 63s 50.53 63s 913 57.32 63s 86 56.26 63s 109 56.57 63s 68 56.11 63s 70

Wheel rim 99.84 57s 83.48 57s 450 - - - - - - - - - - - -

Park shed 115.131 103s 69.36 103s 481 - - - - - - - - - - - -

Table 9

New cost function performance during particle tracing (i.e., F ′ = F + c ∗ E)

Model

Single run t=300

c = 0 c = 0.1 c = 0.5 c = 1.0 c = 0 c = 0.1 c = 0.5 c = 1.0

E Ns E Ns E Ns E Ns E Ns E Ns E Ns E Ns

Ewer body 9.26 38 9.39 34 9.43 30 12.84 16 5.59 544 5.77 139 9.03 34 8.75 23

Car body 12.28 21 - 0 - 0 - 0 6.73 155 - 0 - 0 - 0

Car hood 20.71 64 32.9 28 33.0 26 33.0 26 16.56 1563 16.97 942 17.26 938 16.94 734

Yacht hull 51.31 16 - 5 - 5 - 1 20.13 336 26.3 61 36.47 17 - 9

Wine glass 18.93 54 23.6 26 41.88 12 41.88 12 11.4 2098 12.11 749 11.61 675 11.96 649

Bottle 20.81 41 20.79 42 20.79 42 20.79 42 10.68 2129 10.9 1931 10.9 1931 10.9 1931

4.4. User study

A user study involving ten users was conducted with the
wheel rim and car body models to highlight the efficacy
of the proposed sampling algorithm. First five users had
professional experience, with an average of three years in
product design and the other five were students who had
design experience in industrial projects. First, models were
randomly sampled in the wheel rim and car body shape
space, respectively. They were then shown to the users to
familiarize them with the models in the shape space. Two
tasks were given to the users for each model. In the first
task, a CAD model was provided to the users so that they
could make modifications to it by changing control point
positions. Each user was then asked to develop five diverse
models of their liking using a CAD tool. Next, the models

sampled with Y = 10 and t = 2400 (30 models for the
car body and 20 models for the wheel rim) were shown
to users. As a second task, they were asked to select five
diverse models among the sampled models according to
their preference.

We evaluated the results based on the time taken to de-
sign or select five models and user grading. Each user graded
the five models separately using a Likert scale and the av-
erage was calculated. Table 10 (a) summarizes the findings.
For the wheel rim model, average satisfaction score was 3.94
(µ) with a standard deviation (σ) of 0.4 in the first task,
which is lower than in the second task (4.2±0.45). Further-
more, average time to develop five diverse designs was 11.4
minutes, and the total time to select designs among the
sampled ones was about 3.4 minutes. Satisfaction scores for
the first and second tasks were almost similar when the car
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body model is utilized. However, time for selection in the
second task was lower than the design development time in
the first task. Following the design selection session, each
user was asked to complete a survey including three ques-
tions based on a Likert scale. The results indicated that
the users have had positive feedback about the proposed
sampling technique. Table 10 (b) summarizes the results.

Another user study was conducted to compare the pro-
posed approach with the SSA algorithm and Krish’s gen-
erative design technique [10] on the wine glass models.
Each of these technique produced 20 glass models without
geometric constraints. By setting the creativity value in
Genoform generative design software of Krish to 50%, the
parametric bounds in Table 12 were generated, and utilized
in our sampling technique and in SSA executed approxi-
mately 120 seconds. Seven users without any design expe-
rience were first asked to choose five diverse glass models
they like among the 20 models. They were then scored the
models based on a Likert scale. Note that the survey partic-
ipants did not have any information about the techniques
that were used to generate the models. Furthermore, the
user studies were conducted with the help of two persons
who did not know about the user study goals.

According to the results, our technique generated models
that are more evenly distributed (i.e., a lesser potential
energy E) in the shape space compared to those obtained
by other techniques (see Table 11). Furthermore, average
scores of the participants scoring on five preferred wine
glass shapes were, respectively, 4.09, 4.17 and 4.11, for the
models generated by Genoform, our technique and the SSA
approach. The standard deviations are 0.53, 0.57 and 0.59.
It should be noted that Genoform can hardly be used in the
constrained shape spaces. Figure 12 shows the wine glass
models generated using Genoform, our technique and the
SSA approach.

Finally, we performed a statistical test on the user study
results shown in Tables 10 (a) and 11, which are summa-
rized in Fig. 11 including p-values obtained from Friedman
tests in pair-wise analysis, and Box and Whisker plots. The
Friedman test is appropriate as the sample size of the user
studies are small. The null hypothesis in Friedman test
states no significance in difference between the tasks or ap-
proaches. If the p-value is less than 0.05, there is a strong
evidence that the null hypothesis is rejected. Thus, results
of the first and second tasks for the wheel rim model are
different as the p-value is close to 0.05. However, the null
hypothesis holds true for the other user study results.

5. Conclusions and Future Works

This paper proposed a generative design method which
consists of three algorithm steps and produces variations
of a CAD model. The shape space for a product is defined
by geometric parameters, parameter ranges, and geomet-
ric constraints. Particles are inserted in the shape space
considering space-filling property, which is achieved using

Table 11

Comparison of the proposed technique with the alternative tech-
niques based on the energy E, survey results and usability in the

constrained spaces (Survey scoring - 1: Poor, 2: Fair, 3: Good, 4:
Very good, 5: Excellent. µ: Average score of the participants scoring

five preferred wine glass shapes and σ: Standard deviation))

Method E µ σ Ability to utilize in constrained spaces

Genoform 89.16 4.09 0.53 No

Our Technique 48.51 4.17 0.57 Yes

SSA 63.57 4.11 0.59 Yes

Table 12
Lower and upper bounds for the wine glass model used in the user

study shown in Table 11

Bounds α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15

Lower 0.38 0.58 0.5 3.3 0.36 7.25 5.85 10.55 4.24 14.5 2.54 18 6.25 20.75 6.65 47.2

Upper 1.12 1.76 1.5 9.9 1.08 21.75 17.55 31.65 12.7 43.5 7.6 54 18.75 62.25 19.95 47.8

the Audze-Eglais potential energy between particles. Parti-
cle tracing algorithm with specific rules then finds feasible
shapes in the shape space. Finally, K-medoids algorithm is
employed to find shape representatives, which can be shown
to users.

In future work, a combination of shape features such as
light field descriptors with geometric parameters will be
employed in the sampling method. We think that this en-
ables us to generate visually more distinct models. In ad-
dition, the determination of geometric parameter ranges
will be studied further, which is crucial to forming a bet-
ter shape space that contains many more feasible and in-
teresting shapes. Setting an appropriate number of proper
geometric constraints will also be investigated. Finally, the
choices of a more relevant distance metric will be studied as
Euclidean distance is less meaningful for high-dimensional
data [41].
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Appendix

Ewer main body. Figure 13 (a) shows a ewer main
body [42] which is represented with six cubic Bezier curves
(C1, C2, ..., C6 ), as depicted in (b), and lies on the XY
plane. There are G0 geometric continuities between the
connection points of these curves. G1 continuities exist at
the connection points between the curves C2 and C3, C3
and C4, and C5 and C6. These six curves are rotated
around the Y axis by 2π, and the surface model of the ewer
main body in Fig. 13 (b) is obtained. Each curve is repre-
sented with four control points, and there are 19 (24 − 5)
control points for the ewer main body representation. Note
that five control points reside between the connections of
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Table 10
(a) Design satisfaction outcomes (S. Outcome, 1: Poor, 2: Fair, 3: Good, 4: Very good, 5: Excellent. µ: Average score and σ: Standard

deviation) and design development/selection time (D. Time/ S. Time) in minutes (b) Survey responses collected from the participants (1:

Strongly Disagree, 2: Disagree, 3: Neutral, 4: Agree, 5: Strongly Agree)

(a)

User

Wheel Rim Car Body

Task 1 Task 2 Task 1 Task 2

S. Outcome D. Time S. Outcome S. Time S. Outcome D. Time S. Outcome S. Time

1 4.4 8.2 5 1.3 4.6 14.7 3.8 4.0

2 3.6 7.9 4 2.2 3.2 15.4 3.2 3.5

3 4 10.4 3.8 2.2 3.8 17.2 4.0 2.5

4 3.4 8.2 3.9 2.1 4 11.3 3.6 1.4

5 4.2 8.3 4.7 3.6 3.9 12 4.2 3.2

6 4 12 4.8 4.2 3.8 14.8 4.0 2.3

7 3.4 7.5 3.8 2.3 3 24.7 3.8 5.0

8 4.6 15.2 4.8 4.3 4.4 20.6 4.4 5.0

9 4.2 19.6 3.8 5.6 4.2 18.2 3.8 4.4

10 3.6 17.6 4 7.4 3.2 15.8 3.8 5.0

µ 3.9 11.4 4.2 3.4 3.8 16.3 3.8 3.6

σ 0.4 4.3 0.45 1.8 0.5 4.0 0.3 1.25

(b)

User
The proposed sampling technique

can be useful in product design

Overall, I am satisfied with the models

generated by the sampling technique

The models generated by the sampling technique

give a better understanding of design alternatives

1 5 5 5

2 5 5 5

3 5 4 4

4 3 2 5

5 4 4 4

6 5 5 5

7 5 4 4

8 5 4 5

9 4 4 5

10 5 4 5

µ 4.6 4.1 4.7

σ 0.66 0.83 0.46

neighboring curves. The control points start from the top
portion of the curve C1 and end at the bottom portion of
the curve C6. Each control point is represented with two
coordinates, one for the X and one for the Y coordinate.
Therefore, 38 geometric parameters are obtained for the
ewer main body model. In addition, α0, α1, ..., α37 denote
the geometric parameters. For example, α0 and α1 repre-
sent the X and Y coordinates, respectively, of the first con-
trol point for the curve C1. Moreover, α2 and α3 represent
the X and Y coordinates, respectively, of the second con-
trol point for the curve C1. Other geometric parameters

are ordered in a similar manner (see Fig. 13 (c)).
Table 13 shows that 30 geometric constraints are defined

for the ewer main body model. The constraints from φ0 to
φ26 are linear inequality constraints. The nonlinear equal-
ity constraints φ27, φ28, and φ29 provide G1 continuities at
the connection points between the curves C2 and C3, C3
and C4, and C5 and C6, respectively. In addition, va de-
notes a 2D vector from the point (α12, α13) to the point
(α10, α11), and vb is the 2D vector from the point (α14, α15)
to the point (α12, α13). Furthermore, Λ(va, vb) denotes the
angle between va and vb in radians; vc and vd are the 2D
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Fig. 11. p-values obtained from Friedman tests in pair-wise analysis, and Box and Whisker plots for the user study results.

Fig. 12. Wine glass models generated using (a) Genoform of Krish [10] (a), (b) the proposed technique, (c) the SSA approach

Fig. 13. (a) Two ewer main body models with different shapes (left from [42]. (b, c) Shape of a ewer main body represented with six curves

(C1, C2, ..., C6 )

vectors from the point (α18, α19) to the point (α16, α17)
and from the point (α20, α21) to the point (α18, α19), re-
spectively. Similarly, ve and vf are the 2D vectors from the
point (α30, α31) to the point (α28, α29) and from the point
(α32, α33) to the point (α30, α31), respectively. The value
ranges for the geometric parameters for the ewer main body
are displayed in Table 14.

Car body. Figure 14 (a) shows a sedan car side silhou-
ette that is represented using eight Bezier curves and its
lower portion. The lower portion is automatically adjusted
based on the Bezier curves. Each curve has its own coordi-
nate system, with the origin shown in (b), and the car side

Geometric Constraints

φ0 : f(φ0) = α1 − α3 ≥ 0 φ1 : f(φ1) = α3 − α5 ≥ 0 φ2 : f(φ2) = α5 − α7 ≥ 0

φ3 : f(φ3) = α7 − α9 ≥ 0 φ4 : f(φ4) = α9 − α11 ≥ 0 φ5 : f(φ5) = α11 − α13 ≥ 0

φ6 : f(φ6) = α13 − α15 ≥ 0 φ7 : f(φ7) = α15 − α17 ≥ 0 φ8 : f(φ8) = α17 − α19 ≥ 0

φ9 : f(φ9) = α19 − α21 ≥ 0 φ10 : f(φ10) = α21 − α23 ≥ 0 φ11 : f(φ11) = α23 − α25 ≥ 0

φ12 : f(φ12) = α25 − α27 ≥ 0 φ13 : f(φ13) = α27 − α29 ≥ 0 φ14 : f(φ14) = α29 − α31 ≥ 0

φ15 : f(φ15) = α31 − α33 ≥ 0 φ16 : f(φ16) = α33 − α35 ≥ 0 φ17 : f(φ17) = α35 − α37 ≥ 0

φ18 : f(φ18) = α8 − α6 ≥ 0 φ19 : f(φ19) = α10 − α8 ≥ 0 φ20 : f(φ20) = α12 − α10 ≥ 0

φ21 : f(φ21) = α20 − α18 ≤ 0 φ22 : f(φ22) = α22 − α20 ≤ 0 φ23 : f(φ23) = α24 − α22 ≤ 0

φ24 : f(φ24) = α32 − α30 ≥ 0 φ25 : f(φ25) = α34 − α32 ≥ 0 φ26 : f(φ26) = α36 − α34 ≥ 0

φ27 : f(φ27) = Λ(va, vb) = 0 φ28 : f(φ28) = Λ(vc, vd) = 0 φ29 : f(φ29) = Λ(ve, vf ) = 0

Table 13

Geometric constraints for the ewer main body model
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Parameter ranges

1.0 ≤ α0 ≤ 5.0 66.0 ≤ α1 ≤ 72.0 1.0 ≤ α2 ≤ 5.0 58.0 ≤ α3 ≤ 68.0

1.0 ≤ α4 ≤ 5.0 50.0 ≤ α5 ≤ 62.0 3.0 ≤ α6 ≤ 5.0 43.0 ≤ α7 ≤ 52.0

3.0 ≤ α8 ≤ 8.0 41.0 ≤ α9 ≤ 47.0 6.0 ≤ α10 ≤ 10.0 39.0 ≤ α11 ≤ 42.0

8.0 ≤ α12 ≤ 13.0 37.0 ≤ α13 ≤ 40.0 10.0 ≤ α14 ≤ 15.0 33.0 ≤ α15 ≤ 38.0

10.0 ≤ α16 ≤ 15.0 31.0 ≤ α17 ≤ 35.0 8.0 ≤ α18 ≤ 13.0 29.0 ≤ α19 ≤ 32.0

10.0 ≤ α20 ≤ 13.0 27.0 ≤ α21 ≤ 30.0 5.0 ≤ α22 ≤ 11.0 25.0 ≤ α23 ≤ 28.0

3.0 ≤ α24 ≤ 6.0 22.0 ≤ α25 ≤ 26.0 3.0 ≤ α26 ≤ 5.0 15.0 ≤ α27 ≤ 24.0

3.0 ≤ α28 ≤ 5.0 8.0 ≤ α29 ≤ 18.0 6.0 ≤ α30 ≤ 10.0 4.5 ≤ α31 ≤ 11.0

9.0 ≤ α32 ≤ 11.0 3.0 ≤ α33 ≤ 6.0 10.0 ≤ α34 ≤ 13.0 1.0 ≤ α35 ≤ 3.8

12.0 ≤ α36 ≤ 15.0 0.0 ≤ α37 ≤ 2.2

Table 14

Geometric parameter ranges for the ewer main body model

silhouette is obtained by combining these curves. Quadratic
or cubic curves are utilized, and the geometric parameters
are the X and Y coordinates of their control points. A car
side silhouette is defined by the 38 geometric parameters
α0, α1, ..., α37 (see Fig. 14 (b)). Figure 14 (a) shows a sim-
plified CAD model (in brown) for a car body, which is gen-
erated after sweeping the side silhouette in the Z direction
and performing cut sweep using the blue sketch in the front
profile.

Twenty-six inequality geometric constraints are defined
for the car side silhouette shown in Table 15. Nine of them
are nonlinear and others are linear inequality constraints.
The geometric constraints for the car hood line (the C1
curve) are introduced here. In this case, φ2 and φ3 denote
the linear inequality constraints for the hood line. Without
these constraints, the curve formed can have a sharp bend
as seen in Figure 15 (a). Such hood line shapes are unusual
enough to be considered infeasible. The constraints φ4 and
φ5 enable the generation of convex hood line shapes. Con-
cave hood lines are abnormal for a car side silhouette, as
shown in Fig. 15 (b). All other geometric constraints are de-
termined in a similar way. Table 16 shows the value ranges
of the geometric parameters for the car side silhouette.

Fig. 15. Unusual hood line shapes can appear if the geometric con-
straints φ2, φ3 (a) and φ4, φ5 (b) are not included in the PT algo-

rithm.

Car hood. A car hood is represented using a B-spline
surface with 40 control points, as seen in Fig. 16, which is
mirrored across the XZ plane. The control points P1-P21

are specified in advance (i.e. with fixed positions), and they
can be considered design specifications of a specific car.
The control points P22-P29 are stationary points in the X
and Y axes, and incorporating them avoids unusual hood

Geometric Constraints

φ0 : f(φ0) = α3 − α1 ≥ 0 φ1 : f(φ1) = α5 − α3 ≥ 0

φ2 : f(φ2) = α8 − α6 ≥ 0 φ3 : f(φ3) = α9 − α7 ≥ 0

φ4 : f(φ4) = α7 − (α6 ∗ α11/α10) ≥ 0 φ5 : f(φ5) = α9 − (α8 ∗ α11/α10) ≥ 0

φ6 : f(φ6) = α13 − (α12 ∗ α15/α14) ≥ 0 φ7 : f(φ7) = α18 − α16 − (α20/4) ≥ 0

φ8 : f(φ8) = α20 − α18 ≥ 0 φ9 : f(φ9) = α24 − α22 ≥ 0

φ10 : f(φ10) = α23 − (α22 ∗ α25/α24) ≥ 0 φ11 : f(φ11) = α27 − (α26 ∗ α29/α28) ≥ 0

φ12 : f(φ12) = α31 − (α30 ∗ α33/α32) ≥ 0 φ13 : f(φ13) = α35 − (α34 ∗ α37/α36) ≥ 0

φ14 : f(φ14) = α11 − α9 ≥ 0 φ15 : f(φ15) = α15 − α13 ≥ 0

φ16 : f(φ16) = α17 − α21 ≥ 0 φ17 : f(φ17) = α19 − α21 ≥ 0

φ18 : f(φ18) = α28 − α26 ≥ 0 φ19 : f(φ19) = α36 − α34 ≥ 0

φ20 : f(φ20) = α32 − α30 ≥ 0 φ21 : f(φ21) = α24 − α22 ≥ 0

φ22 : f(φ22) = α13 − (2 ∗ α12 ∗ α15/α14) ≤ 0 φ23 : f(φ23) = α16 − (α20/4) ≥ 0

φ24 : f(φ24) = α18 − (3 ∗ α20/4) ≤ 0 φ25 : f(φ25) = α23 − (2 ∗ α22 ∗ α25/α24) − (α24/2) ≤ 0

Table 15
Geometric constraints for the car body model

Parameter ranges

−10.0 ≤ α0 ≤ 0.0 0.0 ≤ α1 ≤ 20.0 −10.0 ≤ α2 ≤ 0.0 0.0 ≤ α3 ≤ 20.0

−10.0 ≤ α4 ≤ 0.0 10.0 ≤ α5 ≤ 20.0 0.0 ≤ α6 ≤ 80.0 0.0 ≤ α7 ≤ 20.0

0.0 ≤ α8 ≤ 80.0 0.0 ≤ α9 ≤ 20.0 40.0 ≤ α10 ≤ 80.0 10.0 ≤ α11 ≤ 20.0

0.0 ≤ α12 ≤ 20.0 0.0 ≤ α13 ≤ 25.0 20.0 ≤ α14 ≤ 25.0 15.0 ≤ α15 ≤ 25.0

10.0 ≤ α16 ≤ 110.0 −5.0 ≤ α17 ≤ 20.0 10.0 ≤ α18 ≤ 110.0 −5.0 ≤ α19 ≤ 20.0

80.0 ≤ α20 ≤ 120.0 0.0 ≤ α21 ≤ 5.0 0.0 ≤ α22 ≤ 30.0 −25.0 ≤ α23 ≤ 0.0

15.0 ≤ α24 ≤ 30.0 −25.0 ≤ α25 ≤ −13.0 0.0 ≤ α26 ≤ 20.0 −4.0 ≤ α27 ≤ 0.0

10.0 ≤ α28 ≤ 20.0 −4.0 ≤ α29 ≤ −2.0 0.0 ≤ α30 ≤ 10.0 −20.0 ≤ α31 ≤ 0.0

5.0 ≤ α32 ≤ 10.0 −20.0 ≤ α33 ≤ −10.0 0.0 ≤ α34 ≤ 6.0 −10.0 ≤ α35 ≤ 0.0

3.0 ≤ α36 ≤ 6.0 −10.0 ≤ α37 ≤ −5.0

Table 16

Geometric parameter ranges for the car body model

Fig. 16. A car hood model represented using a B-spline surface with
40 control points.

shapes and ensures hood flatness. The other control points,
P30-P40, are mobile points, some of which move together
in one or more coordinate axes, such as P31-P32 and P33-
P34, to generate plausible hood shapes. The geometric pa-
rameters we define for the car hood are some control point
coordinates of P30-P40: x0, . . . , x10. Table 17 lists all con-
trol point positions and the geometric parameters. Table 18
and 19 depict geometric constraints and parameter ranges,
respectively.
Yacht hull. A yacht hull model generated using Khan

et al.’s design framework [43] is used, as shown in Fig. 17.
Eleven geometric parameters are defined on the hull sur-
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Fig. 14. (a) A car side silhouette is represented using eight curves (C1, C2, ..., C8 ) and its lower portion. A simplified CAD model (in

brown) for the car body is generated after sweeping the side silhouette in the Z direction and performing cut sweep using the blue sketch in
the front profile. (b) Geometric parameters (in red) are defined as the control points of the curves.

Control Points

P1 = (19.0,−2.2,−127.8) P2 = (19.0, 20.5,−127.7) P3 = (19.8, 34.9,−127.8)

P4 = (22.7, 70.2,−124.7) P5 = (21.4, 84.8,−101.3) P6 = (21.9, 94.0,−100.8)

P7 = (27.0, 117.0,−100.8) P8 = (36.7, 135.3,−101.0) P9 = (49.3, 142.4,−101.0)

P10 = (59.3, 146.5,−117.6) P11 = (98.6, 152.9,−141.4) P12 = (152.1, 155.0,−133.8)

P13 = (168.4, 146.6,−153.5) P14 = (182.5, 139.7,−170) P15 = (173.3, 111.0,−170.0)

P16 = (169.1, 104.5,−170.0) P17 = (162.2, 84.3,−170.0) P18 = (152.1, 46.6,−170.0)

P19 = (150.6, 23.4,−170.0) P20 = (150.2, 11.4,−170.0) P21 = (150.4,−2.2,−170.0)

P22 = (30.0, 10.4, x9) P23 = (30.0, 37.2, x9) P24 = (30.0, 64.4, x9)

P25 = (30.0, 80.9, x9) P26 = (90.0, 18.9, x10) P27 = (90.0, 42.4, x10)

P28 = (90.0, 72.5, x10) P29 = (90.0, 88.7, x10) P30 = (x0,−2.2,−170.0)

P31 = (x1,−2.2, x2) P32 = (x1, 7.7, x2) P33 = (x3,−2.2, x4)

P34 = (x3, 9.8, x4) P35 = (x5, 87.0, x6) P36 = (x5, 115.1, x6)

P37 = (x5, 139.5, x8) P38 = (x7, 92.7, x6) P39 = (x7, 121.8, x6)

P40 = (x7, 143.2, x8)

Table 17
Control points for the car hood model

Geometric Constraints

φ0 : f(φ0) = α3 − α1 − 20.0 ≥ 0 φ1 : f(φ1) = α1 − α0 − 20.0 ≥ 0

φ2 : f(φ2) = α7 − α5 − 20.0 ≥ 0

Table 18

Geometric constraints for the car hood model

Parameter ranges

0.0 ≤ α0 ≤ 30.0 30.0 ≤ α1 ≤ 90.0 −200.0 ≤ α2 ≤ −170.0 50.0 ≤ α3 ≤ 150.0

−200.0 ≤ α4 ≤ −170.0 40.0 ≤ α5 ≤ 100.0 −240.0 ≤ α6 ≤ −170.0 50.0 ≤ α7 ≤ 150.0

−220.0 ≤ α8 ≤ −170.0 −170.0 ≤ α9 ≤ −130.0 −170.0 ≤ α10 ≤ −150.0

Table 19
Geometric parameter ranges for the car hood model

face. The terms α0, α1, and α2 represent the entrance, mid-
dle, and run region lengths, respectively. Moreover, α3, α4,
and α5 are beams of the sections, and α6, α7, and α8 de-
note the depths of the sections. Finay, α9 and α10 represent
the entrance and bow angles (in degrees), respectively. Ta-
bles 20 and 21 show geometric constraints and parameter
ranges, respectively.

Wheel rim. The front view of a wheel rim model is gen-
erated by first mirroring a Bezier curve with seven con-
trol points and then rotating the curves around the cen-
ter point. Figure 18 shows ten geometric parameters. Here,
α0, . . . , α8 represent some of the control point coordinates
for the curve. Moreover, α9 denotes the angle (in degrees)

Fig. 17. A yacht hull model with 11 geometric parameters

Geometric Constraints

φ0 : f(φ0) = α6 − α7 ≥ 0 φ1 : f(φ1) = α7 − α8 ≥ 0

φ2 : f(φ2) = α3 − α4 ≥ 0 φ3 : f(φ3) = α4 − α5 ≥ 0

φ4 : f(φ4) = 5 − α0+α1+α2
α4

≥ 0 φ5 : f(φ5) = α0+α1+α2
α4

− 4.5 ≥ 0

Table 20

Geometric constraints for the yacht hull model

Parameter ranges

6.0 ≤ α0 ≤ 12.0 6.0 ≤ α1 ≤ 12.0 4.0 ≤ α2 ≤ 8.0 4.8 ≤ α3 ≤ 10.8

4.6 ≤ α4 ≤ 10.6 3.0 ≤ α5 ≤ 9.0 2.3 ≤ α6 ≤ 4.3 2.2 ≤ α7 ≤ 4.21

1.75 ≤ α8 ≤ 3.75 25.0 ≤ α9 ≤ 75.0 30.0 ≤ α10 ≤ 120.0

Table 21

Geometric parameter ranges for the yacht hull model

Fig. 18. A wheel rim model represented using ten geometric param-
eters

Parameter ranges

0.0 ≤ α0 ≤ 9.0 15.0 ≤ α1 ≤ 20.0 0.0 ≤ α2 ≤ 9.0 15.0 ≤ α3 ≤ 30.0

0.0 ≤ α4 ≤ 10.0 25.0 ≤ α5 ≤ 35.0 0.0 ≤ α6 ≤ 11.0 30.0 ≤ α7 ≤ 39.0

1.0 ≤ α8 ≤ 11.0 0.0 ≤ α9 ≤ 22.0

Table 22
Geometric parameter ranges for the wheel rim model

between the horizontal axis and the line connecting the
start and end points of the Bezier curve. No geometric con-
straints are considered for this test model. Table 22 shows
the parameter ranges for the rim model.
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Fig. 19. A wine glass model represented using 16 geometric param-

eters

Geometric Constraints

φ0 : f(φ0) = α1 + α0/11.0 − 25.0/22.0 = 0 φ1 : f(φ1) = α5 − α3 ≥ 0

φ2 : f(φ2) = α15 − α13 ≥ 0 φ3 : f(φ3) = α7 − α5 ≥ 0

φ4 : f(φ4) = α14 − α11 ≥ 0

Table 23

Geometric constraints for the wine glass model

Parameter ranges

0.0 ≤ α0 ≤ 1.5 1.0 ≤ α1 ≤ 1.5 0.0 ≤ α2 ≤ 1.0 1.0 ≤ α3 ≤ 15.0

0.5 ≤ α4 ≤ 1.0 15.0 ≤ α5 ≤ 25.0 0.5 ≤ α6 ≤ 15.0 25.0 ≤ α7 ≤ 35.0

0.5 ≤ α8 ≤ 15.0 30.0 ≤ α9 ≤ 40.0 0.5 ≤ α10 ≤ 15.0 35.0 ≤ α11 ≤ 45.0

0.5 ≤ α12 ≤ 15.0 40.0 ≤ α13 ≤ 50.0 5.0 ≤ α14 ≤ 15.0 45.0 ≤ α15 ≤ 55.0

Table 24

Geometric parameter ranges for the wine glass model

Geometric Constraints

φ0 : f(φ0) = α1 − α0 ≥ 0 φ1 : f(φ1) = α14 − α13 ≥ 0

φ2 : f(φ2) = α15 − α14 ≥ 0

Table 25

Geometric constraints for the bottle model

Parameter ranges

20.0 ≤ α0 ≤ 40.0 20.0 ≤ α1 ≤ 80.0 10.0 ≤ α2 ≤ 160.0 0.0 ≤ α3 ≤ 100.0

10.0 ≤ α4 ≤ 160.0 40.0 ≤ α5 ≤ 140.0 10.0 ≤ α6 ≤ 160.0 80.0 ≤ α7 ≤ 180.0

10.0 ≤ α8 ≤ 160.0 120.0 ≤ α9 ≤ 220.0 10.0 ≤ α10 ≤ 160.0 160.0 ≤ α11 ≤ 260.0

14.0 ≤ α12 ≤ 18.0 200.0 ≤ α13 ≤ 300.0 280.0 ≤ α14 ≤ 340.0 320.0 ≤ α15 ≤ 380.0

Table 26

Geometric parameter ranges for the bottle model

Wine glass. A wine glass model is represented using
two Bezier curves (see Fig. 19), one for the upper portion
and other for the holder. α0, α1, . . . , α15 denote the X and
Y coordinates of the control points. Tables 23 and 24 show
the geometric constraints and the parameter ranges, re-
spectively, for the wine glass model.

Bottle. After setting values for the 16 geometric param-
eters, a bottle model can be generated (see Fig. 20). Tables
25 and 26 show the geometric constraints and parameter
ranges, respectively, for the bottle model.

Fig. 20. A bottle model represented using 16 geometric parameters

Fig. 21. A park shed model represented using eight geometric pa-

rameters

Parameter ranges

0.0 ≤ α0 ≤ 4.0 0.0 ≤ α1 ≤ 4.0 0.0 ≤ α2 ≤ 4.0 0.0 ≤ α3 ≤ 4.0

0.0 ≤ α4 ≤ 2.5 0.0 ≤ α5 ≤ 3.0 0.0 ≤ α6 ≤ 2.5 0.0 ≤ α7 ≤ 3.0

Table 27

Geometric parameter ranges for the park shed model

Park shed. Eight geometric parameters are defined for
a park shed model, as shown in Fig. 21. No geometric con-
straints are considered for this model. Table 27 shows the
parameter ranges for the park shed model.
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