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Abstract

In the present work, a new digital design system, GenYacht, is proposed for the creation of optimal and user-centred yacht hull
forms. GenYacht is a hybrid system involving generative and interactive design approaches, which enables users to create a
variety of design alternatives. Among them, a user can select a hull design with desirable characteristics based on its appearance
and hydrostatics/hydrodynamic performance. GenYacht first explores a given design space using a generative design technique
(GDT), which creates uniformly distributed designs satisfying the given design constraints. These designs are then presented
to a user and single or multiple designs are selected based on the user’s requirements. Afterwards, based on the selections, the
design space is refined using a novel space-shrinking technique (SST). In each interaction, SST shrinks the design space, which
is then fed into GDT to create new designs in the shrank space for the next interaction. This shrinkage of design space guides the
exploration process and focuses the computational efforts on user-preferred regions. The interactive and generative design steps
are repeated until the user reaches a satisfactory design(s). The efficiency of GenYacht is demonstrated via experimental and user
studies and its performance is compared with interactive genetic algorithms.
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1. Introduction

The arrival of the fourth industrial revolution, Industry 4.0,
has transformed the traditional design and manufacturing tech-
niques. There has been an uprise in the efforts by various indus-
tries in digitalisation and smartness of design systems, which
harvest the computational power to explore design spaces for
ingenious, optimal and user-centred designs/solutions. How-
ever, even with such advancements, the maritime industry is
still based on relatively traditional and passive computational
design techniques. In general, naval architects retrieve single or
multiple parent hull forms and apply mirror adjustments to ob-
tain a new form with desired characteristics, whose design per-
formance is usually checked in the end by simulation. If the re-
sults are not satisfactory, these steps are repeated iteratively un-
til the design and performance requirements are fulfilled. This
is a trial-and-error method and highly dependent on the experi-
ence of the designer. Such an exploration of design space can-
not guarantee the generation of true optimal design and fails
to approximate the design space well. Furthermore, the non-
intuitive nature of these techniques cannot capture the naval
architects’ design intention. Although, some academic schol-
ars from the maritime field have made a considerable amount
of contribution to the modernisation of preliminary ship design
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techniques, however, their usage in the industry is still limited.
Some of the recent efforts to support ship design at the prelim-
inary stage includes the development of attribute-based design
techniques [1]; parametric design systems [2]; library-based
[3], sketching based [4], interactive optimisation [5] based and
three-dimensional packing based [6, 7] approaches for explo-
ration of hull form variations; simulation-driven [8] and holis-
tic approach to ship design [9] and machine learning-based ship
design method to assist the optimisation towards the optimal
solution [10].

In this paper, we aim to take the next step in the computer-
aided preliminary yacht hull design by interactively inducing
the user preference on designs into the design space explo-
ration. This is achieved by introducing a new interactive design
system, GenYacht, which brings the benefit of the interactive
and generative design to the preliminary design stage to gener-
ate user-driven hull forms with better performance. However,
the proposed interactive technique can also be utilized for dif-
ferent design applications in maritime and other engineering
fields.

Generative design is an algorithm-driven design process to
empower experienced or novice designers to generate the de-
sired number of optimum alternatives for an initial design. In-
stead of a single solution, the generative design creates poten-
tially various solutions satisfying the given design requirements
and facilitates the designer with the comfort of selecting a solu-
tion that best satisfies his/her needs [11]. As even for the most
experienced designers, their intuition might be limited when
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manually exploring an unprecedented large design space. In
generative design, a basic layout of an input CAD model is first
created. Design specifications and constraints are then defined.
Various computational simulations are later executed to obtain
a set of optimised solutions [12].

Interactive design is a process in which a given design space
is explored, and a target design is evaluated based on human
subjective evaluation. The interaction with a human evaluator
facilitates the generation of a solution that incorporates human
intuition without explicitly codifying them into the design pro-
cess. In interactive design systems, user carry out the design
exploration either with interactive interfaces [13, 14, 15, 16]
or by integrating the meta-heuristics with the interactive inter-
faces to semi-automate the exploration process [5, 17, 18, 19].
In the latter approaches, users are interactively involved at each
iteration/generation of an optimiser and guide the optimisation
process towards the promising regions of the design space. In
this approach, an initial population is first created consisting of
randomly sampled designs, and a user then performs interac-
tion for selecting a design [20] or he/she can rate all the de-
signs shown [21]. The optimiser then performs an iteration
to generate designs similar to the selected or highly-rated de-
sign(s). The creation of similar designs is usually done utilising
a distance-based metric [17, 19]. This iterative and interactive
process continues until the user reaches a preferred or satisfac-
tory design.

As designs generated in each iteration are based on the
user’s selection(s) in the previous iteration, starting the inter-
active process with the randomly generated designs, which are
mostly clustered and non-uniformly distributed, can restrain the
user from exploring all the design possibilities. Furthermore,
distance-based exploration can force the optimiser to converge
to similar designs at a fast rate; therefore, a large portion of
design space can be left unexplored, which will be proven via
experimentations later in this work.

The proposed system is based on novel interactive and gen-
erative design techniques, which run in parallel during the hull
form creation. The generative design technique (GDT) pro-
vides a promising way to explore the design space, and to gen-
erate well-diverse design alternatives automatically. A design
space is first created based on the upper and lower bounds of
geometric parameters of the parent hull. In this space, GDT
then generates a set of N design alternatives. These alternatives
are uniformly distributed in the design space, and each design
represents a particular location in the design space (see the out-
put of GDT in Figure 1, which illustrates the hull forms gener-
ated in two-dimensional design space). The interactive design
involves user preference/intuition interactively during the de-
sign process, thereby guiding the design exploration towards a
more promising region of design space. At this step, hull de-
signs are searched with GDT, and three-dimensional (3D) sur-
face models for the yacht hulls are generated using Khan et al.’s
[22] parametric design technique. Afterwards, these models are
presented to the user along with their physical properties such
as hydrostatics and resistance. The user then performs interac-
tion while selecting a design(s) and design space is then refined
based on the chosen design(s). An overall workflow of GenY-

acht is shown in Figure 1. In this work, the refinement of the
design space is done using a novel space-shrinking technique
(SST), which shrinks the design space and generates new de-
signs in the shrunk space for the next interaction. The interac-
tive process continues until the user reaches a hull design with
desired characteristics. It is noteworthy that the user selections
are made not only based on the performance of the hull but also
according to its form appearance.

2. Related works

Triggered by advances in digital design and manufacturing,
interactive and generative design has received significant atten-
tion in computer-aided design (CAD) and computer graphics
communities. We mainly focus our literature review on the
interactive and generative design for the exploration of design
space for parametric CAD shapes. In this section, we first re-
view prior works in interactive design, followed by a discussion
of existing studies in naval architecture and a brief introduction
of generative design systems.

2.1. Interactive Design

Computational design tools help users to create digital de-
signs for various applications, which is done using optimisa-
tion techniques, interactive interfaces or a combination of both
to create hybrid systems. These tools guide users into explor-
ing a given parametric design space for certain physical crite-
ria. Mostly, interactive interfaces (commonly used in computer
graphics community) are developed for specific design applica-
tions, which are used to synthesise and assemble components
to explore design variations. For instance, Bole [13] devel-
oped a transformation tool to interactively manipulate geomet-
ric parameters for a ship hull design. Interactive tools have also
been proposed for synthesising three-dimensional (3D) charac-
ters [23], procedural modelling of the architectural structures
[24] and for 3D modelling of garment patterns [25]. Some
researchers have also developed interactive techniques for ex-
ploring 3D shape variations [26, 27] and for prediction of their
physical properties, such as the aerodynamics of automotive
[16] and mechanical stress of 3D components [14].

Interactive design approaches have also been coupled with
meta-heuristics, which usually refer as Interactive Evolution-
ary Computation (IEC). In IEC, human evaluation is used as
a component of objective function during the solution space
exploration for an optimum solution. During exploration, the
user’s intuitive assessment of a solution is incorporated to cre-
ate a user-oriented or user-centred design. During optimisa-
tion, the incorporation is carried out in different ways and for
different end objectives. In IEC, an overwhelming majority of
works proposed interactive genetic algorithms (IGA) for vari-
ous design applications. IGAs are based on the principle of the
typical genetic algorithm (GA). Brintrup et al. [17] proposed
an IGA to incorporate the qualitative and quantitative criteria
for ergonomic chair design. In their technique, a user plays the
role of the qualitative criterion guiding the optimisation to the
desired location in the design space. First, an initial popula-
tion of solutions are presented to the user, where he/she rates
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Figure 1: Overall workflow of GenYacht. A design space, formed with geometric parameters and their limits, is inputted into the generative design technique
(GDT), which generates N uniformly distributed hull design alternatives. Among them, a user selects a design based on its appearance and physical properties
such as hydrostatics and resistance. The design space is then refined according to the selected designs, which is again fed into GDT for creating new designs.
This process is repeated until the final design(s) is achieved.

the designs on a Likert scale, and these ratings act as a fitness
value for each design. Therefore, the designs with higher scores
become parents, and the evolutionary process is carried out to
generate designs similar to the parent. A multi-stage IGA (MS-
IGA) was proposed by Dou et al. [21]. At the initial stage,
MS-IGA generates populations of simple designs and as the
interactive evolutionary process continues the design becomes
complex. Dou et al. argue that this helps to minimise the user
fatigue during an interaction, which is one of the major draw-
backs of the IGA based systems [28]. In IEC, user fatigue is the
inability of the user to select potential designs during the design
interaction due to physical or psychological exhaustion [17]. In
another study, along with the user rating, Dou et al. [29] incor-
porated the time spent to evaluate each design to calculate its
fitness value. The incorporation of evaluation time simulates
the user hesitancy into the design process. The performance of
their works [21, 29] was validated with a car dashboard design.

Poirson et al. [19] elicited user perception about the product
design using IGA. In their approach, a user first selects the de-
sign which mostly represents a given semantic attribute. Then,
GA moves the population of solutions closer to the selected de-
sign via a distance function. Poirson et al. also performed dif-
ferent experiments on the parameter tuning of GA, as the con-
vergence of GA mainly depends on these tuning parameters.
Hernandez et at. [30] addressed the problem of Unequal Area
Facility Layout using an IGA. However, instead of presenting
the entire population of designs, Hernandez et al. [30], and
Machwe and Parmee [31] utilised clustering techniques to en-
able a user to evaluate the representative design of each cluster,
thereby ameliorating user fatigue. Gu et al. [32] incorporated
Neural Network-based learning technique, General Regression

Neural Network (GRNN), into IEC to approximate the user’s
aesthetic perception during the interactive evolutionary process.
IGA-based systems have also been proposed for aircraft [33],
software design [34] and structural design [35].

The literature also contains some recent techniques [36] to
interactively prune the Pareto Front solution set at each gen-
eration of multi-objective GA, which helps to reduce the size
of the Pareto front and to obtain the desired Pareto optimal so-
lutions at the end of the evolutionary process. Recently, few
researchers have diverted also their attention in utilising other
meta-heuristic algorithms such as Particle Swarm [20] and
Teaching-Learning-Based Optimisation [18] to develop IEC-
based design systems.

IGA has been used for various design applications, how-
ever, to the best of our knowledge, Duchateau’s work [5] is
the only example related to the subject of the present study in
the field of naval architecture. In [5], Duchateau proposed an
IGA-based technique to allow users to create and select designs
based on insight gained during the design exploration process.
The proposed technique was applied for the preliminary design
of a mine-countermeasures vessel. Duchateau argued that the
complexity of the ship design hinders designer to explore vast
and potentially more region of the design space with traditional
design techniques. Therefore, an interactive and evolutionary
approach was proposed to gradually steer the optimiser to the
exploration of more promising design solutions. In naval ar-
chitecture, DeNucci’s work [37] is another example of the in-
volvement of user into the design process, which focuses on
capturing and integration of the design rationale (i.e., reason-
ing behind the design decision) at the conceptual stage of ship
design. DeNucci developed a Rationale Capture Tool (RCT)
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to incorporate design rationale as user experience and perfor-
mance into the design process, thereby linking the users’ design
configuration preferences to the ship performance at its prelim-
inary design phase.

In this work, we aim to propose a new interactive design to
overcome the aforementioned drawbacks of IGA-based system.
Therefore, in Table 1, we describe some advantages of GenY-
acht over typical IGA-based design systems.

2.2. Generative Design
During the last few years, generative design techniques have

played a critical role in automating the exploration of paramet-
ric design spaces. Unlike traditional optimisation based design
exploration, GDTs explore large design spaces to find a vari-
ety of optimal alternatives that give users the ability to choose a
design that best fits his/her needs. Literature contains many ef-
forts from researchers in design exploration techniques for pre-
liminary design of naval vessels [7, 38, 9, 10]. However, these
techniques are not developed in the context of generative design
and therefore, can only explore a limited region of design space
to generate single or Pareto designs, which are usually a slight
variation of the parent shape. To give some background to the
readers from naval architecture, here, we mentioned some exist-
ing generative design systems developed for parametric design
exploration and their limitations.

A random search based generative system, Genoform, was
developed by Krish et al. [11] for parametric design explo-
ration, in which variation between designs is achieved via Eu-
clidean distance-based similarity criterion. Genoform cannot
explore a design space well due to its random search nature,
which has been proven via experimentation in [12]. An iter-
ative design exploration system, Fractal [39], was developed
by Autodesk, which provides nI design possibility for a given
parametric shape. Here, n represents the geometric parameters
and I is the number of levels for each parametric range. An-
other system called Dream Lens was proposed by Matejka et al.
[40] to explore and visualise a large number of generatively cre-
ated designs. Dream Lens explores performance spaces for the
given problem domains. Recently, Khan et al. [41] proposed
a Psycho-physical distance metric to induce human perception
into the design process for the exploration of diverse shapes.

Similarly, Kazi et al. [42] developed DreamSketch, a gen-
erative design platform for the exploration of design sketches
at the conceptual stage. The usability of this system requires
users to have digital sketching skills. Moreover, Zaman et al.
[43] devised GEM-NI, which is a generative design software
for design exploration of two-dimensional shapes. Later, an ex-
tension of GEM-NI called MACE was also proposed by Zaman
et al. [44] with enhancing capability of visualisation of design
alternatives. Gunpinar and Gunpinar [45] proposed a genera-
tive design approach based on a particle tracing algorithm, and
recently, Khan and Awan [12] developed a generative design
system, DesignN, for exploration of CAD shapes with contin-
uous and discrete parameters. However, in [45] and [12] no
physical performance criterion was evaluated during the design
exploration.

Some researchers have also introduced some application-
specific generative design systems, such as ParaGen, Dexen

and GENE ARCH, which were introduced by Turrin et al. [46],
Patrick [47] and Caldas [48] for exploring parametric struc-
tures, façade and energy efficient building designs, respectively.

3. Method Overview

In this section, the algorithmic details of GenYacht will be in-
troduced. After describing the basic terminology and the gener-
ative design approach, the proposed interactive design approach
in line with the space-shrinking technique and GenYacht’s user-
interface will be introduced.

3.1. Basic Terminology and Generative Design Techniques
(GDT)

Let a design space X formed for a parent yacht hull m,
which is represented using a set of geometric parameters, xm =

{xm,k, k = 1, 2, . . . , n} ∈ X ⊆ Rn. X is a subset of Rn and is
bounded by the lower xl

m and upper xu
m bounds of geometric

parameters (i.e. X := {xl
m,k ≤ xm,k ≤ xu

m,k,∀k ∈ {1, 2, . . . n}}).
It is impractical, if not impossible, for a user to manually it-

erate through all the astronomical possibilities of hull designs
in X. Therefore, our objective is to explore X with the aid of an
optimiser to find a set N consisting of N uniformly distributed
diverse hull forms (N = {x1, x2, x3, . . . , xN} ∈ X). Here, N
is a user-defined parameter and each design in N represents a
specific location in X. To obtain the set N , Khan and Gun-
pinar’s approach [49] is adopted, which is briefly explained in
this subsection. This approach utilises Audze and Eglais [50]
space-filling criterion (F1(N)) to find uniformly distributed de-
signs (see Equation 1).

F1(N) =

N−1∑
p=1

N∑
q=p+1

1
D(xp, xq)2 (1)

where

D(xp, xq) =

√√ n∑
k=1

(xp,k − xq,k)2 (2)

Here, D(xp, xq) is the Euclidean distance between the de-
signs p and q. Minimisation of F1(N) favours the uniform dis-
tribution of the N designs in X.

In the case of high-dimensional design spaces, the space-
filling criterion favours the placement of designs to the design
space’s boundaries, which is undesirable. Therefore, the space-
filling designs are searched within the class of Latin-hypercube
with a criterion of non-collapsingness between designs. This
criterion divides each dimension of X into N intervals and en-
sures that two designs do not share the same range. It is in-
corporated into the search process using Equation 3, which cal-
culates the number of intervals that N designs share. Minimis-
ing this equation creates either complete or semi non-collapsing
designs depending on a user-controlled parameter Ω, which ad-
justs the weight for F2(N).

F2(N) = Ω ×

N−1∑
p=1

N∑
q=p+1

K(yp, yq) (3)
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Table 1: Comparison between IGA-based systems and GenYacht

No. IGA GenYacht
1 Interactive process starts with the initial population of ran-

domly generated designs, which, in most cases, are not
well spread out in the design space. Therefore, this can
limit users from well exploring all regions of design space
[27].

The interactive process starts with uniformly distributed
designs, covering all the design possibilities within the
design space. This allows users to effectively explore the
entire design space.

2 Requires tuning of optimisation parameters, such as se-
lection operator, crossover and mutation probability, for
desirable results, which is non-trivial for most of the users
[12].

Does not require parameter tuning of the optimization spe-
cific parameters. The only user-defined parameter is the
shrink/expand rate, which controls the diversity of designs
in each interaction. According to the experiments con-
ducted in this work, shrink/expand rate does not affect the
performance of the optimizer to generate uniformly dis-
tributed and non-collapsing designs.

3 Selection of suitable distance metric(s) is critical [19] to
converge (i.e., get similar) the initial population of solu-
tions towards the user-selected designs.

The designs space is shrunk in each interaction while
eliminating the non-preferred regions, which aids the op-
timiser to converge to the user-preferred designs.

4 It is hard to maintain the high variations between designs
in the interactions.

A user can create significantly diverse designs at each
interaction using space-filling and non-collapsing criteria
(will be discussed in Section 3).

5 Starting the interactive process with random designs re-
quires users to carry out a large number of interactions to
explore all the design possibilities. Therefore, this higher
number of design evaluations can increase user fatigue
[17, 31], thereby resulting in converging towards the lo-
cal optimal and undesirable solutions.

Starting the interactive process with uniformly distributed
design can help users to explore more design possibilities
with fewer design evaluations, which reduces the possi-
bility of user fatigue. Moreover, the space-shrinking tech-
nique provides better control of the total number of inter-
actions to be performed.

K(yp, yq) =

n∑
j=1

f (yp,k, yq,k) (4)

f (yp,k, yq,k) =

1 if yp,k = yq,k

0 otherwise
(5)

In Equation 3,K(yp, yq) denotes the number of intervals that
the designs p and q share, and yp and yq are the discrete rep-
resentations for xp and xq, respectively. To calculate the dis-
crete value (yp,k) of kth geometric parameter (xi,k) for the ith

design, its range between lower (xk
i,l) and upper (xk

i,u) bounds is
first partitioned into N intervals [xl

i,k = x1
i,k, x

2
i,k, . . . , x

N
i,k = xu

p,k]
and an integer coordinate r is then assigned to yk

i as follows:
∀r ∈ {1, 2, . . . ,N}, (xr

i,k ≤ xi,k < xr+1
i,k )⇒ (yi,k = r).

During the design exploration for the N designs, the cost
function F(N) in Equation 6 is minimised.

F(N) =

N−1∑
p=1

N∑
q=p+1

1
D(xp, xq)2 + Ω ×

N−1∑
p=1

N∑
q=p+1

K(yp, yq) (6)

In this approach, design exploration process starts by gener-
ating an initial population (P) consisting of N sub-populations
(P = {pL, L = 1, 2, . . .N}). The Lth sub-population of P consists
of s randomly sampled designs (pL = {xg, g = 1, 2, . . . s}) in X.
This means for each solution, P contains a sub-population of
size s. During the convergence, an optimiser guides all the sub-
populations to their optimum position under the consideration

of each sub-population’s best solution (i.e. a solution that min-
imise F(N)). Initial solution set N = {xp1 , xp2 , . . . , xpN } is first
obtained from P containing N solution; one solution from each
sub-population using a greedy-selection strategy [49]. The ini-
tial N contains the combination of solutions which gives mini-
mum value of F(N). During the optimisation, each iteration is
completed by performing N sub-iterations, and a sub-iteration
is completed after updating all the designs in a sub-population
using an optimiser. After the convergence, GDT returns an op-
timal set Nop of N space-filling designs. Algorithm 1 sum-
marises the stepwise procedure of GDT.

Different optimisers, such as Genetic Algorithm (GA) [51],
Particle Swarm Optimisation (PSO) [52], Artificial Bee Colony
(ABC) [53], Teaching-Learning-Based Optimisation (TLBO)
[54] and Jaya Algorithm (JA) [55], have been integrated into
GDT and a final selection for GenYacht system was made based
on optimisers’ performance and computational complexities.
The results of these optimisers will be shown in Section 4.1.
Figure 2 (a) and (b) show the randomly distributed designs and
uniformly distributed designs created using GDT. It can be seen
that designs generated using GDT are well distributed and cover
all the regions of the design space.

3.1.1. Constrained Design Spaces
GenYacht also gives users the ability to interactively explore

constrained spaces, which are composed of feasible (i.e. de-
signs satisfying the constraints) and infeasible (i.e. designs
violating the constraints) designs. GDT should only gener-
ate feasible designs. Therefore, in this work, Deb’s heuristic
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Figure 2: Illustration of designs generated via random sampling in a two-dimensional design space (a). While the designs generated using GDT in the same
two-dimensional space are uniformly distributed because of space-filling and non-collapsing criteria (b). The interaction process started with GDT generated
designs and in each interaction, design space is shrunk towards the user selection (c). The selection of design is indicated with a tick-mark.

Algorithm 1 The pseudo-code of generative design algorithm

1: function GDT (X,N, s,Ω)
2: Input: Create a parent hull m and parametrise it with n

geometric parameters (xm,1, xm,2, . . . , xm,n).
3: Input: Initialise number of designs to be created (N), sub-

population size (s) and parameter Ω.
4: Input: Define the design space with lower and upper

bounds of n parameters, X := {xl
m,k ≤ xm,k ≤ xu

m,k∀k ∈
{1, 2, . . . n}}.

5: Randomly create an initial population (P) consisting of N
sub-populations (p1, p2 . . . , pN) of size s.

6: Select N initial best designs (N = {xp1 , xp2 , . . . , xpN }) one
from each sub-population.

7: while termination criterion is not satisfied do
8: for L = 1 to N do
9: for g = 1 to s do

10: Update design xg of pL using an meta-heuristic op-
timiser and obtain updated design x′g.

11: Calculate cost value F(N ′) and F(N) for N ′ =

{x′g, xp2 , . . . , xpN } and N = {xg, xp2 , . . . , xpN }.
12: if F(N ′) < F(N) then
13: Replace the old design xg with x′g in pL

14: else
15: Reject the new design x′g and keep xg in pL

16: end if
17: end for
18: Obtain the updated pL and set as p′L.
19: Find the new best design x′pL

from p′L.
20: Replace xpL with new x′pL

in set N (i.e. N =

{x′p1
, xp2 , . . . , xpN }).

21: end for
22: end while
23: return Optimal design set Nop.

constrained handling method [56] was utilised, which uses a
tournament selection operator. This operator selects two de-
signs and compares them with each other. A design p is said to
be constrained-dominate other design q if any of the following
heuristic rules are true:

1. The design p is feasible and design q is not.
2. The designs p and q both are infeasible, but design p vio-

late less number of constraints.
3. The designs p and q both are feasible, but design p has

minimum cost function value.

The design p is selected only if it constrained-dominate de-
sign q. In case, if both designs, p and q, are infeasible and have
the same number of constraint violations, the design with better
cost value is then selected.

3.2. Interactive Design Approach

In an interactive design stage, N hull designs generated via
GDT are shown to the user along with their physical properties
such as form coefficients, residuary and frictional resistance,
metacentric radius, metacentre, longitudinal and transverse mo-
ments of inertia, longitudinal and vertical centre of buoyancy
and flotation. The user then selects the designs according to the
hulls’ overall appearance and physical properties. This interac-
tion step allows users to compare designs based on their design
requirements and helps to make an appropriate design decision.
Once the desired hull form is selected, the design space is re-
fined based on the selected design. The refined design space
is then imported into GDT to generate new designs in the next
interaction step. This interaction procedure is repeated multiple
times until a desirable number of designs are obtained. Figure
2 (c) illustrates the implementation of proposed interactive de-
sign approach on a two-dimensional design space. As shown in
this Figure, at each interaction, the design space formed in the
previous interaction shrinks by focusing on the preferred de-
signs. In this way, the region of the user’s interest can be better
scanned.

Our design space shrinking process follows the analogy of
woodcarving in which a carver first selects a large piece of tim-
ber (usually bigger than the size of the final form) to create the
desired artefact. He/she then removes the large chunks of wood
to achieve a general shape. Afterwards, the carver scrapes the
pieces of wood step-by-step and gradually proceeds to a final
shape. Such material scraping can be reflected as an exponen-
tial decay. In the initial interactions, the design space shrinks
at a faster rate, and it decreases exponentially as the interaction
process continues. The algorithmic details of the proposed SST
are given in the next section.
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3.2.1. Space-Shrinking Technique (SST)
In the proposed interactive approach, a initial design setNop

is first generated using GDT and an interaction loop between
the user and GenYacht is then completed involving three steps:
(2) the user selects preferable design(s) among the ones gen-
erated by GDT, (3) the design space is refined based on the
selection(s), and (3) the shrunk space is inputted to GDT for
the creation of new designs )for the next interaction. At the end
of the multiple interaction loops, single or multiple preferred
designs are obtained.

For the sake of simplicity, a single hull selection will be
considered in the method’s explanations. In the T th inter-
action loop, the user selects a tth design (xt) from NT−1

op =

[xp1 , xp2 , . . . , xpN ], which is obtained from GDT in the (T − 1)th

(T is integer) interaction. After the user selection, a new de-
sign space, XT , is formed while shrinking the previous de-
sign space (XT−1) based on the selected/preferred design xt =

(xt,1, xt,2, . . . , xt,n), and a new design set NT
op is obtained from

XT . The shrinking of design space is performed by calculating
new lower (x́l

m) and upper (x́u
m) bounds using Equation 7 for

XT := {x́l
m,k ≤ xt,k ≤ x́u

m,k,∀k ∈ {1, 2, . . . n}}.

x́l
m,k = xl

m,k +
∣∣∣λT
− × R

l
T

∣∣∣
x́u

m,k = xu
m,k −

∣∣∣λT
− × R

u
T

∣∣∣ where k ∈ {1, 2, . . . , n} (7)

Here, λT
− is the shrink rate initialised by the user in the T th

interaction and ranges between 0 < λT
− ≤ 1. When λT

− is zero,
the space shrinking process terminates. Rl

T and Ru
T are the con-

tinuous growth and decay parameters, respectively, which are
computed using Equation 8 after the interaction T .xt,k = xl

m,k × exp(Rl
T × T )

xt,k = xu
m,k × exp(Ru

T × T )
(8a)

Equation 8a represents the continuous exponential decay of
the design space during the interactive process. xt,k represents
the amount after shrinkage and xl

m,k is the initial amount at the
T th interaction. Solving the Equation 8a for Rl

T and Ru
T yields

Equation 8b. 
Rl

T = ln
(

xt,k

xl
m,k

)
× 1

T

Ru
T = ln

(
xt,k

xu
m,k

)
× 1

T

(8b)

After obtaining the shrunk space, xl
m,k and xu

m,k are set equal
to x́l

m,k and x́u
m,k respectively. Additionally, GenYacht has the

ability to expand the design space. If the user is not satisfied
with the designs in an interaction he/she can expand the design
space instead of shrinking the space. During the expansion, the
upper and lower bounds ofXT are constrained by the upper and
lower bounds of the initial design space X (i.e., XT := {x́l

t,k ≤

xt,k ≤ x́u
t,k : (x́u

t,k ≤ xu
m,k) ∧ (x́l

t,k ≥ xl
m,k)∀k ∈ {1, 2, . . . n}}), which

limits the new design space from over-expanding the initial de-
sign space. Expanding the design space is carried out using
Equation 9.

x́l
m,k = xl

m,k −
∣∣∣λT

+ × R
l
T

∣∣∣
x́u

m,k = xu
m,k +

∣∣∣λT
+ × R

u
T

∣∣∣ where k ∈ {1, 2, . . . , n} (9)

Here, λT
+ is the expansion rate and ranges between 0 < λT

+ ≤

1. Algorithm 2 summarises the stepwise procedure of SST.
It should be noted that the parameter values should be scaled

so that parameters with large values do not disproportionately
affect the space shrinking or expanding process. Scaling is done
using Equation 10 to avoid negative natural log values, where
[a, b] = [1, 2].

xt 7→
xt − xl

t

xu
pt − xl

t
× (b − a) + a (10)

To track the amount of shrinkage or expansion for the de-
sign space after each interaction, we introduce a quantity Q
(see Equation 11), which calculates the average percentage of
shrinkage or expansion amount in the T th interaction for the
dimensions of the design space.

Q =
1
n
×

n∑
k=1

100 −
x́u

t,k − x́l
t,k

xu
t,k − xl

t,k

× 100

 (11)

Algorithm 2 The pseudo-code of SST

1: Input: X, N, s and Ω.
2: Generate an initial design set Nop ← GDT (X,N, s,Ω).
3: Display designs in Nop.
4: Initialise T ← 0
5: repeat
6: T ← T + 1
7: Select tth design (xt) from NT−1

op (Note: N0
op = Nop).

8: Input: Ω, N, s, λT
− or λT

+

9: for k = 1 to n do
10: if λT

− is define then

11: XT ←

x́l
m,k ← xl

m,k + (λT
− × R

l
T )

x́u
m,k ← xu

m,k − (λT
− × R

u
T )

12: else if λT
+ is define then

13: XT ←

x́l
t,k ← xl

m,k − (λT
− × R

l
T )

x́u
m,k ← xu

m,k + (λT
− × R

u
T )

14: end if
15: if x́u

m,k > xu
m,k (x́l

m,k < xl
m,k) then

16: x́u
m,k ← xu

m,k (x́l
m,k ← xl

m,k)
17: end if
18: xl

m,k ← x́l
m,k and xu

m,k ← x́u
m,k

19: end for
20: NT

op ← GDT (XT ,N, s,Ω)
21: Display all designs of NT

op.
22: until The user obtains a satisfactory design(s)

In an interaction between the user and GenYacht, the user can
select multiple designs. Let the user select two designs, xt1 and
xt2 . Two design spaces,XT

1 andXT
2 , are then formed. Therefore,

two solution sets,NT
op1 andNT

op2, are separately obtained using
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GDT so that 2 × N designs are shown to the user in the next
interaction (T + 1).

In the (T + 1)th interaction, if the user again selects two de-
signs, one from NT

op1 and other from NT
op2, then again 2 × N

designs are created. However, if the user selects a design from
NT

op1 (NT
op2), then NT

op2 (NT
op1) is discarded and XT+1

1 (XT+1
2 )

is formed to create N designs for further interactions. If the
user selects two designs from NT

op1 (NT
op2), 2 × N designs are

generated and NT
op2 (NT

op1) is discarded.

3.3. User-Interface of GenYacht

GenYacht is programmed in a Microsoft Visual Studio plat-
form using the C++ programming language and Parasolid’s (a
3D geometric modelling kernel) API functions. A parent hull,
shown in Figure 3, is initially stored in the database. During the
interactive process, design modification of parent shape is per-
formed using parametric design approach proposed by Khan
et al. [22]. In this design framework, the overall hull shape
is divided into three regions: Entrance-Region (ER), Middle-
Region (MR) and Run-Region (RR). Each region is then rep-
resented with a set of geometric parameters such as length (L),
beam (B), depth (D). Moreover, the entrance region is further
constituted of three more geometric parameters: entrance angle
(θ), bow angle (β) and sheer angle (α). The parametric rep-
resentation of the parent hull can be seen in Figure 3. The de-
scription of these parameters with their upper and lower bounds
values (in meters) used for the study’s experiments are given in
Table 2.

The main window of GenYacht consists of an OpenGL
based graphical interface for design visualisation (see Figure
4). There are several dialog boxes in GenYacht for interactive
designs, for calculating hydrostatics and resistance, and for set-
ting the initial design space. To start the interactive design,
the user first retrieves the parent hull using the ’initial design
button’ in the main window. The user then inputs the number
of designs to be generated in the interactive design dialog box
and selects the geometric parameters. To create a design space
that is used in the interactive design process, the user can set
any values for the upper and lower bounds of geometric param-
eters using the design space dialog box. GenYacht generates
the specified number of yacht hulls, and the physical results
of these hulls can be calculated at a user given draft value and
Froude number. Based on the designs’ form appearance and
physical results, the user next makes design selection(s). Along
with the selected design(s), the user inputs the shrink/expand
rate value in the interactive design dialog box, which gener-
ates designs in the shrunk/expanded space for the next interac-
tion. The user keeps interacting with GenYacht until the desired
number of final designs are obtained.

GenYacht also provides users with the ability to define dif-
ferent geometric constraints any time during the interactive pro-
cess(such as overall length (LOA), maximum beam (Bmax) and
maximum depth (Dmax)). The physical constraints can also be
implemented in GenYacht to generate a hull with specific per-
formance characteristics. For instance, a user can put a con-
straint to create designs with specific resistance value. How-
ever, care should be taken while defining the constraints and

design space, as there can be a case when hull with a partic-
ular performance criterion might not be generated within the
given design space. GenYacht notifies the user on the occur-
rence of such a situation. A user can also export the final de-
sign in the .x t file format, which can be later imported to other
digital platforms for further design and performance analysis.
Hydrostatics and resistance results of the hull design can also
be exported to a .xlsx file for future study.

4. Results and Discussion

In this section, we first compare the performance of five dif-
ferent meta-heuristics while integrating them with GDT. After-
wards, the efficiency of the GDT and SST is demonstrated with
various experiments, and the effectiveness of GenYacht is also
validated with a user study. Finally, we compared the perfor-
mance of GenYacht with IGA.

4.1. Optimiser Selection for GDT

Five different optimisation techniques, GA, PSO, ABC,
TLBO and JA, were tested in this section. Among them, TLBO
and JA are newly proposed yet powerful techniques, which does
not require any parameters to tune their convergence perfor-
mance. Therefore, this quality of TLBO and JA alleviate an
extra burden from the user during the design process. Our aim
of testing these optimisation techniques was to select the one
having converged to the least value of F(N) (Equation 6) in
lesser computational time. As mentioned in [19], an interactive
design approach with high computation cost may result in user
fatigue and longer waiting time between interaction loops can
cause loss of user interest.

Mutation and crossover rates were, respectively, set to 0.1
and 0.8 in GA, which control the exploration and exploitation
of the search process. The linear-decreasing-inertia-weight was
used and cognitive (c1) and social (c2) learning factors were
taken as 2 in PSO. The number of employed and onlooker bees
were set to the size of the sub-population (s) in ABC. The per-
formances of these optimisation techniques were tested under
the standard algorithmic settings of N = 10, n = 12, s = 10
and Ω = 6. Figure 5 shows a plot between F(N) and number
of iterations. The computational time taken by the optimisers is
given in Table 3.

It can be observed from the plot in Figure 5 that JA, GA and
TLBO have similar performance, while JA converged to a lower
value of F(N), and it can create completely non-collapsing de-
signs (see Table 3). Based on these results, JA was selected to
be used in GDT to update the designs in the sub-populations.

4.2. Validation of GenYacht System

In this section, the results of GDT and SST will be given,
which are embedded in the GenYacht system.

4.2.1. Results of GDT
Figure 6 shows 20 space-filling design alternatives for the

parent hull, which were generated using GDT. These alter-
natives are searched within a 12-dimensional design space
bounded with parametric limits shown in Table 2 and with the
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Figure 3: Parametric representation of the parent yacht hull created using Khan et al.’s design technique [22]. The parent hull is divided into three regions:
Entrance, Middle and Run. Each region is represented with independent set of geometric parameters.

Table 2: Geometric parameters with their lower and upper bounds for the yacht hull.

Parameters Definition [LB, UB] (meters) Parameter Definition [LB, UB] (meters)
Le Length of ER [5.0, 8.0] De Depth of ER [2.3, 4.3]
Lm Length of MR [4.0, 10.0] Dm Depth of MR [2.2, 4.2]
Lr Length of RR [2.0, 6.0] Dr Depth of RR [1.7, 3.0]
Be Beam of ER [5.0, 7.0] θ Entrance Angle [30◦, 90◦]
Bm Beam of MR [5.4, 7.4] β Bow Angle [30◦, 100◦]
Br Beam of RR [3.4, 5.4] α Sheer Angle [0◦, 3◦]

where LB: Lower Bound, UB: Upper Bound

Figure 4: The user interface of GenYacht consists of a main window (a), a dialog box for user-GenYacht interaction (b), a dialog box for calculating hydrostatics
and resistance (c) and a dialog box for setting the initial design space (d).

Table 3: Computational times for GA, PSO, ABC, TLBO and JA when used with Algorithm 1

Computational Time (minutes) Space-filling (F1) Collapsing Designs
JA 0.84 16.56 0

TLBO 3.51 17.82 3
GA 2.14 17.95 0

ABC 1.40 18.79 3
PSO 2.94 19.06 6
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Figure 5: Plots for the objective function (F(N)) versus number of iterations
performed in GA, PSO, ABC, TLBO and JA.

parameter settings of s = 10 and Ω = 6. From Figure 6,
one can easily observe that the designs are distinct from each
other, which can help users of GenYacht to start the interac-
tive process with a design that meets his/her requirements. As
mentioned before, the design modification is performed using
Khan et al.’s parametric design framework [22], which locally
modifies the geometric parameters. To ensure the generation
of plausible shapes (i.e., realistic hull shapes) in interactions,
following hard design constraints have been implemented: (1)
−

Be
3 ≤ (Be−Bm), (2) −De

3 ≤ (De−Dm), (3) Br ≤ (Bm, Be) and (4)
Dr ≤ (Dm,De). The first two constraints limits the parameters
Bm and Dm, and last two constrains Br and Dr. According to our
experience, if Bm >> Be or Dm >> De, and if Br >> (Bm, Be)
or Dr >> (Dm,De), implausible designs can occur as shown in
Figure 7 (a) and (b), respectively.

During the hull form design, there are a variety of numeri-
cal performance analyses, consisting of both hydrostatics and
hydrodynamics, that naval engineers have to perform to deter-
mine whether the hull form can fulfil the design requirements
before the selection of final design. Therefore, using GenYacht,
users can also evaluate the hydrostatics properties, form coef-
ficients, residuary (Rres) and frictional (RF) resistance of each
hull design at the given values of the draft (T ) and Froude num-
bers (Fn). Table 4 shows the hydrostatics and resistance results
for the first ten designs in Figure 6. It should be noted that the
hydrodynamics of a hull includes wave resistance, sea-keeping,
manoeuvrability, and so forth, which mostly require Computa-
tional Fluid Dynamic (CFD) analyses to be performed. How-
ever, running these computationally expensive analyses make
the user wait for a long time before performing the next inter-
action. This can also result in directing the exploration process
towards the non-preferred regions. Therefore, we have utilised
empirical equations, proposed by Keuning and Katgert [57], to
calculate the Rres of the hull alternatives. Figure 8 shows the
plots of Rres (expressed in Newton) versus Fn of the first six
designs in Figure 6. The differences of the appearances and
performances for the designs in the plots of Figure 8 demon-

strate that the designs generated by the proposed system in
Figure 6 are diverse in terms of both appearance and perfor-
mance. Figure 8 also validates the implementation of Keuning
and Katgert’s [57] technique to calculate residuary resistance
at different Froude numbers. Frictional resistance is also cal-
culated according to the ITTC formula [58]. Reynolds number
(Rn) and frictional resistance coefficient (CF) are calculated for
a yacht navigating in seawater at 15◦C with density and kine-
matic viscosity of 1.189 × 10−6 (m2/s) and 1026.021 (kg/m3),
respectively. The total resistance (RT ) is the sum of Rres and
RF .

It should be noted that the core objective of this work is to
propose an interactive design system, which gives users the
ability to generate yacht hull designs at the preliminary stage
while taking its form appearance and physical properties into
account. After selecting the desired hull form(s), the user
can export it and then can perform detailed hydrodynamic and
structural analyses using off-the-shelf computational tools.

4.2.2. Results of SST
The results of SST were validated with different experiments

using different values of the shrink rate (λ−). Ten design al-
ternatives were first generated, and interaction then proceeded
with an objective to select a design having a trade-off between
appearance and performance. Figure 9 (a), (b) and (c) shows
the designs created in the fifteen design interactions with λ−
settings of 0.1, 0.5 and 1.0, respectively. Figure 10 (a), (b) and
(c) shows plots for the average percentage of space-shrinkage
Q versus the design interactions (T ) in Figure 9 (a), (b) and (c),
respectively. In Figure 10, the top axis (in red colour) shows
the design selected in each interaction for design in 9. The area
under the curve represents the percentage of the space shrunk
in fifteen interactions. It is noteworthy that at higher values
of λ−, the value of Q is high in the interactions. For instance,
when λ− was set to 0.1, 0.5 and 1.0, the original design space
shrunk by 6.93%, 34.66% and 69.31% in the first interaction
(T = 1), respectively. Afterwards, in the second interaction
(T = 2), 3.47%, 17.32%, and 34.66% per cent of the design
space created in the first interaction was shrunk.

As mentioned before, at each interaction user selects a design
and depending on the value of shrink/expend rate design space
is shrunk/expended and new N designs are generated for the
next interaction. At higher values of λ−, the amount of design
space shrinks is higher (see Figure 10 (c)), which might create a
narrower design space. The designs generated from this space
for the next interaction can be similar (i.e. designs with less
diverse, see designs in Figure 9 (c)). When λ− is set to higher
values during interactions, the designs converge faster (i.e., get
similar) towards the selected design. For instance, interaction
results, which are shown in Figure 9 (c) were obtained using
λ− = 1.0. In this setting, designs started to converge after the
third interaction.

On the contrary, designs generated from a design space cre-
ated with a smaller value of λ− will be more diverse. As shown
in Figure 10 (a), when λ− was set equal to a very small value
(i.e.λ− = 0.1 ), the shrinkage of the design space in each inter-
action is small and designs generated are diverse. Thus, it may
require a higher number of iterations for a user to converge to
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Figure 6: Design alternatives generated using GDT for the hull model in Figure 3 (For better visualisation of designs in this figure, the reader is referred to the
digital version of this article).

Table 4: Hydrostatics and resistance results of the first ten design alternatives shown in Figure 6.

Hull 1 2 3 4 5 6 7 8 9 10
D 2.54 2.95 4.00 3.99 3.61 3.68 3.57 3.18 4.02 2.50
T 1.00 1.00 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
Fn 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

BWL 6.83 6.35 4.11 5.25 4.37 4.87 5.79 6.70 4.28 6.47
LWL 14.78 16.96 13.04 16.96 10.08 17.33 21.04 14.59 17.58 14.79
Awp 70.31 75.92 36.96 60.14 31.95 58.90 78.29 77.61 48.61 62.72
Ax 5.18 4.15 3.43 3.93 3.81 4.22 5.42 7.15 3.80 4.22
Aws 77.38 80.31 46.64 67.67 37.28 69.03 92.56 88.64 63.60 69.98
V 42.31 38.90 26.46 33.60 20.26 37.06 63.10 72.09 37.75 36.75
IT 200.35 194.14 36.03 92.48 37.10 84.76 147.99 233.29 52.26 145.05

LCB 8.41 10.09 6.36 9.45 6.25 9.05 11.70 7.97 10.10 8.55
KB 0.34 0.32 0.48 0.40 0.44 0.44 0.50 0.54 0.51 0.32

LCF 8.30 9.44 6.66 8.52 5.82 10.03 11.72 7.87 9.98 8.44
BM 4.74 4.99 1.36 2.75 1.82 2.29 2.35 3.24 1.38 3.95
KM 5.07 5.30 1.84 3.15 2.67 2.72 2.85 3.77 1.90 4.27
Cp 0.55 0.55 0.59 0.50 0.53 0.51 0.55 0.69 0.56 0.59
Cb 0.42 0.36 0.33 0.25 0.31 0.29 0.35 0.49 0.33 0.40

Cwp 0.70 0.70 0.69 0.68 0.73 0.70 0.64 0.79 0.65 0.66
Cm 0.76 0.65 0.56 0.50 0.58 0.58 0.62 0.71 0.59 0.69
Rres 353.10 251.74 83.01 145.27 166.24 114.05 225.99 417.82 121.06 282.74
RF 575.80 663.84 315.53 559.36 207.67 580.12 903.01 653.12 310.98 521.01
RT 928.90 915.58 398.54 704.63 373.91 694.17 1129 1070.94 432.04 803.75

where D: Depth (m), T : Draft (m), BWL: Width at waterline (m), LWL: Length at waterline (m), Aw: Waterplane area (m2), Ax: Maximum sectional area (m2),
Aws: Wetted surface area (m2), V: Volume (m3), IT : Transverse moment of inertia (m4), LCB: Longitudinal center of buoyancy (m), KB: Vertical center of
buoyancy (m), LCF: Longitudinal center of flotation (m), BM: Metacentric radius (m), KM: Metacenter height (m), Cp: Prismatic coefficient, Cb: Block
coefficient, Cwp: Waterplane coefficient, Cm: Midship coefficient, Rres: Residuary Resistance (N), RF : Frictional Resistance (N) and RT : Total Resistance (N).

the final design. However, for small values of λ−, the user can
explore more variety of designs. For instance, design generated
in Figure 9 (a) are created when λ− = 0.1, therefore, even at
the 15th interaction, designs are still diverse, thereby showing
a slow convergence. Moreover, as shown in Figure 9 (b), at
λ− = 0.5, the user can achieve a better trade-off between design
diversity and convergence because the amount of space shrinks
at each interaction is moderate (see Figure 10 (b), which shows
the amount of space shrinks at each interaction when λ− = 0.5).
Therefore, we recommend the users to start the interaction at
λ− = 0.5. Figure 11 shows a plot between Q and λ−, which
confirms a linear relationship between these two parameters.

The ability of the proposed system to search for a target de-
sign was also tested. First, a target design was randomly se-
lected from the design space in Table 2 and its parameter val-
ues and hydrostatic properties were stored. Afterwards, the in-
teractive process was started with an aim to replicate the target
design. At the first interaction, 20 designs were generated and
from these designs, a design having parameter and hydrostat-
ics values close to the target one is selected. Based on the se-
lected one, 20 new designs were generated and the process was
repeated for four interactions. The target and final design ob-
tained after the fourth interaction is shown in Figure 12. It can
be observed that visually both designs are very similar, more-
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Figure 7: Example of implausible/non-realistic designs in the absence of hard
design constraints.

Figure 8: Plot showing the residuary resistance (Rres) versus froude number
(Fn) for the first six designs in Figure 6.

over, their parameter values and hydrostatic properties, which
are shown in Table 5, are also close to each other. This vali-
dates the ability of GDT and SST technique to converge to the
desired hull design.

Here, it is noteworthy that the interactive process should be
started with an appropriate number of designs to visualize all
the uniformly-distributed designs that sufficiently covers the
design space. However, this number can be high particularly for
the high-dimensional design spaces or the design spaces whose
dimensional bounds are large. In such cases, the claim that the
proposed method removes the user fatigue may not hold true.
However, as proven via experiments, using GenYacht the user
can still explore a design space well compare to IGA.

4.3. Computational Time
As mentioned before, one of the crucial criteria in interac-

tive design techniques is that it should be computationally less
expensive. As longer waiting times cause user fatigue, thereby
hindering the user from effectively exploring the design space
for a satisfactory design. The experiments in this study were
conducted using a PC with an i7-7700 Intel Core, 3.6-GHz pro-
cessor, and 8-GB physical memory. Figure 13 shows a plot
of the computational time (in seconds) of GenYacht versus the
number of designs (N) generated. The computational cost is
the sum of the computational time taken by GDT to explore N

Table 5: Parametric values and hydrostatic properties of the design shown in
Figure 12. Hydrostatic properties were calculated at the draft of 2.0 meters.

Parameters (units) Target Design Generated Design
LOA (m) 20.72 20.07
Bmax (m) 6.62 6.84
Dmax (m) 3.49 3.71
Awp (m2) 92.26 92.69
Ax (m2) 7.89 7.38
Aws (m2) 116.23 113.12
V (m3) 96.06
IT (m4) 205.70 193.46
LCB (m) 11.20 11.17
KB (m) 0.670 0.645

LCF (m) 11.40 11.56
BM (m) 1.98 2.05
KM (m) 2.65 2.70

Cp 0.636 0.608
Cb 0.414 0.382

Cwp 0.737 0.754
Cm 0.651 0.629

space-filling designs, parametric modification of N designs us-
ing Khan et al.’s [22] approach, computation of hulls’ physical
properties and space-refinement in one interaction. From Fig-
ure 13, it can be seen that GenYacht took approximately two
minutes to create 50 designs in an interaction. These results
confirm that the computational complexity of the proposed sys-
tem is significantly low.

4.4. User Study

A user study was conducted to validate the efficiency and
feasibility of GenYacht. We selected ten PhD candidates as the
subjects in the user study from the Department of Naval Ar-
chitecture, Ocean and Marine Engineering at the University of
Strathclyde, who had an average 3.60±2.67 (average ± stan-
dard deviation) years of industrial and research experience in
the ship and parametric design. A brief introduction of in-
teractive designs approach was first presented to the subjects,
and a small training session of the proposed system was then
given along with a description of SST and its behaviour with
the shrink rate. Plots in Figure 10 and 11 were described to
them, so they can have a better understanding of tuning this pa-
rameter. Subjects were also familiarised with geometric param-
eters of the primary hull form, and they were asked to set some
design specifications before starting the interactive process. To
avoid user fatigue, we asked subjects first choose some designs
based on their form appearance and then compare these designs
based on the physical performance before making the final se-
lection or vice versa. The results of the interactive process for
each subject are shown in Table 6, and the designs generated by
the subjects are shown in Figure 14. The average time taken by
the subjects to complete the interactive process was 5.12±1.07
minutes.

After the interactive process was completed, we asked the
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Figure 9: Yacht hull alternatives created during fifteen design interactions using a shrink rate (λ−) of (a) 0.1, (b) 0.5 and (c) 1.0 (For better visualisation of designs
in this figure, the reader is referred to the digital version of this article).
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Figure 10: Plots showing the percentage shrinkage (Q) of the design space during fifteen design interactions (T ) when (a) λ− = 0.1, (b) λ− = 0.5 and λ− = 1.0.

following questions to the subjects for further evaluation of the
system. Their responses were acquired on a 5-point Likert scale
(1: Strongly Disagree, 2: Disagree, 3: Neutral, 4: Agree, 5:
Strongly Agree):

Q1: GenYacht is easy to use in an interactive generation of hull
forms.

Q2: GenYacht yacht provides a more sophisticated approach

for preliminary hull design compared to the traditional
parametric design exploration techniques.

Q3: Using GenYacht, I was able to generate a satisfactory de-
sign within my design requirements.

The average of the Likert scores given by the subjects
for the first, second and third questions were 3.90±0.7379,
4.40±0.6992 and 4.00±0.9428, respectively. The variations of
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Table 6: Results of the user study.

Interaction Subjects 1 2 3 4 5 6 7 8 9 10
Initial Designs (N) 15 25 17 10 10 25 21 17 15 20

T = 1
Design Selected 8 24, 7 3 1 9 20 9 15 8 9

λ1
− 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.7 0.5

N1 10 10 17 13 10 5 21 17 15 20

T = 2
Design Selected 7 19 1 4 8 1 15 2 10 6

λ2
− 0.5 0.5 0.5 0.8 0.5 0.5 0.8 0.5 0.8 0.3

N2 7 10 10 6 10 10 21 17 15 20

T = 3
Design Selected 3 1 4 1, 2 5 1 8 15 9 12

λ3
− 0.5 0.5 0.5 0.8 0.7 0.9 1.0 0.6 - 0.3

N3 5 5 5 3 10 5 21 20 - 15

T = 4
Design Selected 3 2 1 3 6 1 15 9 - 13

λ4
− 0.5 0.5 1.0 1.0 0.9 - - 0.6 - -

N4 5 5 5 6 20 - - 20 - -

T = 5
Design Selected 2 2 4 4 7 - - 2 - -

λ5
− - - 1.0 - 0.9 - - 0.8 - -

N5 - - 3 - 5 - - 20 - -

T = 6
Design Selected - - 3 - 1 - - 2 - -

λ6
− - - - - - - - 1.0 - -

N6 - - - - - - - 20 - -
T = 7 Design Selected - - - - - - - 3 - -

0.0
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Figure 11: Plot showing the percentage shrinkage (Q) of the design space ver-
sus shrink rate (λ−).

Target Design


Generated Design


Figure 12: The design space is explored interactively to replicate a target de-
sign. The image at the top is the target design and the image at the bottom is
the design generated after four interactions using GenYacht. The similarity be-
tween the two designs indicates that the user could well approximate the target
design.

the user scores were also analysed using the Box and Whisker
plot, which is shown in Figure 15. These results indicate
that users could generate satisfactory designs using GenYacht.
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Figure 13: Plot showing GenYacht’s computational cost (in seconds) versus
number of designs (N).

Some subjects also suggested that they would like to create par-
ent shape using GenYacht, which they would like to further op-
timise for the specific performance criteria. Subjects also like
that GenYacht gives users the ability to compare a wide vari-
ety of designs, which is essential in ship design because mostly
the optimal configuration is the one that best satisfies the cus-
tomers’ design requirements.

4.5. Comparison with IGA

We have also compared the performance of GenYacht with
an IGA-based technique. As mentioned in Section 2.1, there are
many variations of IGA in literature. In this work, we imple-
mented IGA similar to [19] and utilised first a two-dimensional
design space formed using the geometric parameters, Le and
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Figure 14: The designs generated by the subjects in the user study (For better visualisation of designs in this figure, the reader is referred to the digital version of
this article).

Be, of the parent hull for better visualisation of GenYacht’s and
IGA’s performances (see Figures 16 and 18). However, we se-
lected a preferred design, instead of rating the designs as this
selection scenario is similar to GenYacht. An initial popula-
tion of random designs was first generated, and a design was
selected from the initial population. GA then performed an it-
eration/generation to create a new population with an objec-
tive to minimise the normalised Euclidian distance between the
chosen design and designs in the population pool. In each gen-
eration, designs were evaluated to make a selection. Here, GA
was used with a crossover and mutation rates of 0.8 and 0.1,
respectively. It can be seen from Figure 16 that after each gen-
eration of GA, the newly generated designs moved towards the
selected design. Here, it is noteworthy that IGA focuses on the
convergence towards the selected hull form instead of maintain-

ing diversity. Furthermore, the main drawback of IGA is that it
depends mainly on the initial population, therefore, starting the
interactive process with randomly sampled designs may limit
the exploration process. More than 50% of the design space
remained unexplored when IGA was used in Figure 16. Figure
17 highlights these unexplored regions.

Figure 18 (b) and (a) show the interactive results of GenY-
acht for a two-dimensional design space created with Le and Be,
and the shrunk design space at each interaction. It can be ob-
served that, compared to IGA, GenYacht let the users start the
design process with well-sampled diverse designs, and explores
the design space effectively at each interaction. Moreover, SST
provides a sophisticated way to focus the computational effort
on the exploration of potential regions.

Figure 19 (a) shows the yacht hull designs generated using
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Figure 15: Box and Whisker plots of the scores given to question Q1, Q2 and
Q3 given by the subjects during the user study. These questions were asked to
the subjects at the end of user study for the further evaluations of GenYacht.

GDT and the left-most image of Figure 19 (b) shows the ran-
domly sampled designs, which were then used to perform the
interaction process using IGA. The space-filling values (F1(N))
of GDT and random designs is 17.2708 and 26.1553, respec-
tively. The high value indicates that the random design does
not spread in the design space evenly. A glance on the appear-
ance of these designs can reveal that there exists a clustering
pattern in randomly generated hull forms (first image of Figure
19 (b)). For instance, from the top; first three, next four and last
three designs are similar. However, designs created via GDT
(Figure 19 (a)) are unique to a large extent. Figure 19 (b) also
shows the interactive results of IGA. It can be observed that the
designs generated in each interaction are very similar as there
is no control for the user maintaining the design diversity.

5. Conclusions and Future Works

This work proposes a novel interactive and generative de-
sign based CAD system for the preliminary design of yacht hull
forms. The proposed system introduces a new design approach
in the field of naval architecture, which enables naval architects,
engineers and novice users to integrate their design preference
about the hull form into the design space exploration. Users
can generate designs which best fit their design requirements,
not only in term of physical performance but also taking into
account the design’s overall appearance. In GenYacht, a gener-
ative design approach first generates a user-defined number of
space-filling hull forms satisfying the given designs constraints.
Among these designs, the user selects a suitable one, which is
then used to create a new design space using a space-shrinking
technique. The new space is then fed to the generative design
technique to generate a set of space-filling designs for the next
interaction. This generative and interactive process continues
until the user reaches the desired shape. Experimental and user
study results reveal that the proposed system has the potential
to create user-centred yacht hull forms, which better reflects
designers’ design considerations. The new system also benefits
the users in the field of naval architecture and marine engineer-
ing compared to the parametric based exploration techniques.

In future work, we plan to use non-dimensional parameters
to define the hull design space and to test GenYacht with this
design space. We would also like to integrate more physical
performance criteria, such as sea-keeping and stability. Further-
more, we would like to develop empirical equations for these
criteria using deep-learning. Our efforts will also continue to
develop a web-based user-interface to give better usability to
the potential users. Additionally, we think that it will be even
worthy to work for the development of a similar interactive sys-
tem for other types of marine vessels, such as chined hulls (or
planing crafts) and multihulls.
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